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Abstract 

 
The objective of this paper is to study the effect of the dispersion 

coefficients and the reaction parameter on the hydrodynamic dispersion of a 
reactive solute in electro-osmotic flow through the method of finite elements using 
quadratic Lagrange polynomials. 

 
 
1.0 Introduction 
 

The flow and spread of fluids through porous media such as soils, bead packings, ceramics and concrete plays 
an important role in a wide variety of environmental and technological processes. Examples include the spreading 
and clean up of underground hazardous wastes, oil recovery separation processes such as chromatography and 
catalysis, and the degradation of building materials. 

For example chromatographic separation using electric fields to drive electro-osmotic flow are usually 
performed in packed columns. The role of the packing is to provide a large surface area for solute adsorption and 
thereby to improve column performance. However, recent advances in manufacturing methods now enable the 
fabrication of electrochromatographic columns having characteristics transverse dimensions in the micron to 
submicron range.  
 Axial dispersion is important in chromatographic process because it tends to spread the solute peaks. As a 
result, closely packed peaks cannot be resolved when dispersion is excessive. Estimating the magnitude of the 
dispersion and identifying the conditions leading to minimum dispersion are thus important to optimizing the 
process. 
 As a solute is converted in an open column, transverse variations in the velocity field produce transverse 
variations in the solute concentration. At the same time, transverse diffusion tends to reduce induced concentration 
gradients. At sufficiently late times transport in the axial direction is just balanced by diffusive transport in the 
transverse direction. This is the phenomenon of hydrodynamic dispersion. Such dispersion yields a mean axial 
profile of the solute concentration that is consistent with diffusive transport alone, although the apparent diffusivity 
is larger than the actual value. 

While the study of miscible flow in porous media has been of considerable research, it is difficult to obtain 
exact solutions of the Navier – stokes and hydrodynamic dispersion equations for the case of flow in porous media. 
However advances in computer have made it numerically possible to simulate fluid flow in complex geometrics. 
Many factors which control the invasion of fluids such as viscosity, surface tension forces, the structure of the 
porous medium, and the external driving force which displaces the fluids can be directly incorporated into 
computation of fluid dynamics. 
 
2.0 Governing Equation 
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 In this research work we consider the flow of a two dimensional planar transport of a reactive solute in an 
electro-osmotic flow. The flow is assumed to be incompressible and transport properties are assumed constant. 
Under this restriction the time dependent concentration field is governed by 

 
2 2

2 2

c c c c
Dx Dy U c

t x y x
λ∂ ∂ ∂ ∂= + − +

∂ ∂ ∂ ∂
     (2.1) 

Where  is the local solute concentration  is the time, and  is the local fluid velocity. DyDx ,  are the 

coefficients of hydrodynamic dispersion in thex  and y  direction respectively, and λ  is the rate of chemical 

reaction. 
 Further assuming that flow is steady and that inertial effects are small, the momentum equation may be 

written as    
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Where µ  is the viscosity, l  is the net local charge density, and φ  is the local electric potential. 

 Finally, for a dielectric constant ∈  that does not vary with position the poison equation governing the 

electric field is:  
∈
−=

∂
∂+

∂
∂ l

2

2

2

2

yx

φφ
    (2.3) 

We shall consider the following boundary and initial conditions 
 
 
 
 
       (2.4) 
. 
 
 
 
 
 
 
 
 
 

and the local charge density may be related to the electric field potential through the Boltzmann distribution given 
by:   ( )RTZFFZCeSinh φ2−=l   

where F  is the Faraday constant, Z  is the ion charge number, Ce  is the bulk fluid ion concentration R  is the 
universal gas constant and T  is the temperature. Various forms of (2.1) have been solved by various researchers for 
various boundary conditions. For example Gardner et al, (1964) Fried (1975) solved the one dimensional case for 
Zero reaction using the method of characteristics Bear (1979) provides some analytical solutions for the one 
dimensional problem using the Laplace transform. Batu (1989) provides a generalized analytical solution for the two 
dimensional case using Laplace transform.  Also Celia (1989) solved the one dimensional case with Biodegradation. 
Dillon (1989) also consider an analytical model of contaminant transport from diffuse sources in saturated porous 
Media analytically, Robert et al (1989) provided an approximate solution for one-dimensional absorption in 
unsaturated a finite element model for the diffusion convection equation with applications to air pollution. 
(Hromadka II and Guymon 1982) use Nodal domain integration model of one dimensional advection-diffusion 
problem. Barker and Soliman (1982) also solve the case of solute transport in fissured aquifer using method of 
Laplace transform. Tim and Mostaghimi (1989) used the finite element method to solve the one dimensional form of 
the transport of pesticides and their metabolites in the unsaturated zone, to mention but a few. But the problem of 
flow of a solute in an electro-osmotic flow has only been treated sparingly only few literatures exist to the 
knowledge of the author. For example Griffiths and Roberts (2003) have treated the problem of the case of a non-
reactive neutral solute using the method of asymptotic series solution and they only considered the steady state one 
dimensional problem. 
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 The difference between the above literature and ours is that we are considering a two dimensional problem 
of the flow of a reactive solute in electro osmotic flow which involves solving three partial differential equations 
simultaneously. 
 
 
3.0 Solution of the two dimensional problems using the quadratic  

Lagranges interpolation functions 
 

We shall proceed to approximate the contaminant dispersion problem by the quadratic LaGrange 
polynomial as follows for triangular elements. 
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Putting (3.1) in to (3.2) we have 
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Using the Galerkin criterion we have 
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 This on simplification gives 
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Giving in finite difference form we have: 
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which on collecting like terms we have 
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We shall now proceed to apply the finite difference scheme to the time variable and the trapezoidal rule to obtain the 
cranknicolson of grid scheme.  Taking 
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(3.5)) is the iterative formula for the quadratic Lagrange interpolation functions for the concentration. 
 
4.0 Solution of the two dimensional momentum equation using the  

quadratic Lagrange’s interpolation functions 
 

We shall in this section proceed to formulate the finite elements solution of the two dimensional problem 
using the quadratic interpolation function for triangular elements. 
Recalling that the two dimensional momentum equation to be given by: 
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together with the boundary conditions  
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Which on integration we have:  
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this simplifies to give:  
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In finite difference form 
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Since hk=∆  we multiply through by hk12  we have 
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This is the difference scheme for the momentum equation 
 
3.0 Solution of the two dimensional Electric Field potential using quadratic 

Lagranges interpolation function 
 
We recall the equation for the two dimensional electric field potential to be together with the boundary 
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carrying out a similar analysis for the electric potential we have 
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Since hk=∆  we multiply through by hk12  to give 
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4.0 Discussion  
 

Figure 1 ows the impact of changes in the vertical disper
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decrease with increase in the dispersion coefficient. That is an increase in the dispersion process reduces the 
concentration of the contaminant for both the lon
 

. 
 

 
 

Lastly Figure 3 shows the impact of the reaction parameter for 
0.5, dt = 0.5.It is observed that increase in the the reac
Meaning that when the rate of reaction is high the overall concentration of the initial contaminant decreases. 
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Figure 2: Effect of vriation longitudinal dispersion coefficient for quadratic polynomials
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ows the impact of changes in the vertical dispersion for quadratic polynomials for 
0.5, dt = 0.5 it is observed that as the dispersion coefficient increases the 

Figure .2 we show the impact of variation in the longitudinal dispersion coefficient 
1000 and Un=0.0133, h-0.1, k = 0.5, dt=0.5. It is also observed that the concentration profile 

decrease with increase in the dispersion coefficient. That is an increase in the dispersion process reduces the 
concentration of the contaminant for both the longitudinal and vertical dispersion coefficients 

 

3 shows the impact of the reaction parameter for Dx = 0.1, Dy = 0.5 and Un
0.5.It is observed that increase in the the reaction parameter decrease the value of the concentration. 

Meaning that when the rate of reaction is high the overall concentration of the initial contaminant decreases. 
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0.5 it is observed that as the dispersion coefficient increases the 

.2 we show the impact of variation in the longitudinal dispersion coefficient 
0.5, dt=0.5. It is also observed that the concentration profile 

decrease with increase in the dispersion coefficient. That is an increase in the dispersion process reduces the 

       

Un = 0.5, h=0.1, k = 
tion parameter decrease the value of the concentration. 

Meaning that when the rate of reaction is high the overall concentration of the initial contaminant decreases.  
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In the above cases it can be observed that the concentration profile decreases steadily in the axial direction 

until a steady state is reached.   
 
5.0 Summary 
 

We have been able to provide a finite element solution to the problem of hydrodynamic dispersion of a 
reactive solute in electro-osmotic flow using quadratic triangular element for the two dimensional problem. 
Numerical oscillation has been successfully minimized. This shows the efficiency of the method in simulating 
hydrodynamic dispersion of reactive solute. Also in this work we have been able to numerically show the impact of 
the reaction parameter in a two dimensional electro-osmotic flow which does not exist in literature. 
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Figure 3: Effect of Variation in Reaction Parameter 


