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Abstract

The method of characteristics for solving systems of partial differential
equations coupled with jump conditions is used in analysing flow downstream of a
hydraulic jump instead of the normal analytical approach adopted in Hornung [1].
It is shown that the method of characteristics together with the jump conditions can
correctly be used as an alternative method to determine the mean vorticity
downstream of the hydraulic jump as a function of the Froude number and height
ratio. The mean vorticity does not increase from zero as a function of Froude
number minus one but, however, it approaches a constant value at large Froude
number. The present work extends the mode of Hornung [1] to include non linear
velocity profile used in calculating the torque with a view to determining the mean
vorticity. Theresult obtained by this method generalizesthat of [1].

1.0 I ntroduction

Hydraulic jump can be understood as a sudden ahdlant passage of a flowing liquid from a low sag
below critical depth to a high stage above critidapth during which the velocity changes from saoptcal to
subcritical. The jump is an example of non-unifdtaw in an open channel and it frequently appeara atationary
phenomenon in the steady flow of a stream (Lighf8]). It proves to be useful and instructive foany different
purposes to describe flow at large Reynolds nuralnelr Froude number primarily in terms of the disttibn of
vorticity since at large Reynolds number and Froudeber the flow downstream of a hydraulic jumpl W& seen
to be rotational (Hornung [1]).

In his paper Hornung [1] determined the mean vitytidownstream of a hydraulic jump as a functiorthef
Froude number by an analytic approach through ewasen of angular momentum. Although the totalmamtum
is conserved across the jump, the total mechamioargy dissipates. This energy dissipation is batteid to
turbulence generated at the jump. Thus, for ingaRouse et al [3] modelled a hydraulic jump akwa £xpansion
and interpreted the turbulence as separation eddiéle Rajaratnam [4] and Narayanam [5] modellegljump as a
wall jet. Other contributors to vortictiy determtimn include, notably, Yeh [6], Gharib and Wiegdii}l Rood [8],
Wu [9], Longuet-Higgins [10], and so on.

In this paper the flow downstream of a hydraulimp has been analysed and the mean vorticity
determined using the method of characteristics lealywith jump conditions. The paper extends thekvadr
Hornung by including the nonlinear velocity profilEhe mean vorticity, in dimensionless form, apies a
maximum value of 2 as+ «

20 Jump Conditions

Here, it is assumed that uniform flow occurs bgtktteam and downstream of the hydraulic jump aat th
the resistance of the channel bottom is negligidle. apply the conservation of mass and momentuandontrol
volume of the hydraulic jump (Figure 1) in order derive the classical equations connecting the itiond
upstream and downstream of a hydraulic jump. (Eidyr

Journal of the Nigerian Association of Mathematicd&hysics Volume 1(November 2006)239 - 248
Vorticity determination in a hydraulic jump A.E. Eyo J. of NAMP



Control volume

- Uy >_|_/\/ h2

Figure 1. Hydraulic jump with control volume

From the quantities given in figure 1 the contip@quation is given as
uh =uh, (2.1)
where y,U, are the velocities before and after the jump andnl b are the corresponding depths. The momentum
equation becomes
$ g0 + purh, =3 pghy + puh, (2.2)
Here the suffixes 1, 2 are used to denote quastifistream and downstream of the jump respectively
Equation (2.2) can be expressed as

2 2
hzz_hlZ:Z(U1hl uzhz) (23)
g
Substituting (2.1) into (2.3) and simplifying we olptai
2 2
Ly :1%[“&) 2.4)
gh 2h°( h
The non - dimensional Froude number F is defined by
2
F= (2.5)
gh
so that (2.4) can be expressed in the form
2
F= H—[1+ij 2.6)
2 H
Here H =% (2.7)

is the height ratio, with limits H> 1 as F> 1. F in (2.5) is the Froude number before the &ytic jump.
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3.0 Conditions across the jump with downstream vorticity

Here the downstream velocity distribution (seg [dlgiven by

—u oo
a3 -

where y is the downstream mean velocity,is the mean vorticity, y is the distance measwedically upward
from the bottom of the channel as in Figure 2.

Control volume
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Figure 2: Hydraulic jump with control volume and finite mean vorticity downstream

This change in velocity distribution affects onhetmomentum balance, which has to be modified. mbdified

formis %+2:@+M (3.2)
ul ul hZ
where
:ﬂy@(@‘y}ﬁ(_@‘yjz af Y (3.3)
h"*lu, A2 ) {2 h, '
Using the change of variable hl =t (3.4)
2
the integral (3.3) becomes
|=ﬂjl(ﬂ-2“‘h2+“’2hz +“’2th2—“’2th2)dt (3.5)
h "\ U, 47wy

2 2
Integrating (3.5) with respectto t fromt =0 to 1 we find| =ﬂ wh, + wh, _ah
h ( 4u?  3u 2u

2
which yields after simplification
w'h,

6u>

2

(3.6)
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Wy

or I = 3.7
6Hu2 (37)
(using (2.7)). Equation (3.7) can be written as
mz
I = 3.8
oH (3.8)
where Q =C;—hz (3.9)
2
Substituting (3.8) into (3.2) and writing the rednldimensionless variables we obtain
1+2 Q1,2 .10 (3.10)
F F H 6H
which on re-arrangement yields
_ 2
L_pe)-120-H)v0" (3.11)
F 6H
2
Multiplying both sides of (3.11) bsz— and simplifying we obtain
H(, 1) 1-9Q° 3.12
2F (1+Hj 12(H -1) (312)
4.0 Method of characteristics and calculation of torque through the use of nonlinear velocity

profile

Lett* be the torque per unit lateral distance and ohiae the dimensionless torque given by

=t (4.1)
pu;h;

To determine T we consider the system of equafitrescontinuity equation and the momentum equation)
ou oV _, 4.2)
ox oy
APV (4.3)

ax ay poy

Equation (4.3) can be written as

Ov, vov__p _g (4.4)
0xX u dy pudy u
In matrix notation the PDES (4.2) and (4.4) become
ou du
— 0 1) — 0
ax ay
N | 1 o (4.5)
9
v — || ov — - -
A — a
ax 0 u ay puoyu
or u,+Au, =d (4.6)
0 0
1 ux Uy
here A= ,u, = ,u, = ,d=
W v u, Hy 2 -1 ap g
J— Vx V —_—— ==
0 u ’ M0y u

V
The eigenvalues of the matrix A aﬂ; =0, /12 = — . Thus the gradients of the characteristic cuaresgiven by
u

ﬂ = 0, ﬂ = X (4.7)
dx dx u
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in thexy- plane, which trace the progress of the waves.rTihtgration yields the characteristics of theteysof
equations (4.2) and (4.3). The integration of ih& £quation of (4.7) yields the characteristicvey = constant.
The second equatiotan only be solved if we know the formswéndv. The eigenvectors corresponding

1
R () _
to A, and, are respectively™ = 0 and V7 =
\Y
u
11 1 -4
v
The fundamental matrix becom&s= v so thatP™ = . Now
0 G 0 v
u
PAP=A (4.8)
00
where A = v =diagonal matrix. Equation (4.8) implies
0 —
A=PA P! (4.9)

Substituting (4.9) into the system of equation§)4ve find [Uj + P/\Pi(ty J - [_ 1p, 0 g} , that is,

VX
Pl(UxJJrA[Pl[Uy D - Pl[ 1p, © g] , that is,
VX Vy T .
pu u

u u u
Loy . ][0 3] Loy - L ‘v[ 1p. O ],maus
u v 0 — u |lv u -—X -9
0o — 0o — y 0 — pu u
\ \ \
u — uv, E[lpy +0
+( j = , SO that
uv, Yy 1( 1p,
\' vV Yol 9
so that u, - w, 11 p, +4g (4.10)
v vip
uv 1( 1
X+v, =—(——py —gj (4.11)
% vi p
Equation (4.11) is a linear first order partial differential equationand the associated Lagrange’s
equation is x_dy__ dv (4.12)
u v _ipy g
P

From (4.12) we obtain the ordinary differential atjon vdv = [— i p, — gjdy which gives on integration
Yo

1 1
EV2 :_;py -gy+c (4.13)
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where g is an arbitrary constant . The expressionvfiar,, = /201 _2p_ 2gy -
Y2

At the free surfacey = h(x), p = p*, where p* is the excess pressure over the gpagissure, and\s the velocity of
the fluid at the free surface. We then have frorh 3%

1 1 . 1 1
Evﬁ(x'h) = —;P -gh+c, O ¢ = EVE(X, h)+ ; p* +gh (4.14)
Substituting (4.14) into (4.13) we ﬁndl_\/2 - lvﬁ = p* +gh - P _ ay
2 o 2 0
The pressure equation isp = p* +pg(h - y) + %pvﬁ = %,ov2 (4.15)
2
Substitution of (4.15) into (4.10) gives  vu, —uv, = l op* _ va_v (4.16)
p oy oy

But vu —uv, =-u? i(lj so that (4.16) becomes

ox\ u
u, i(lj = —i l p* —l\/2 (4.17)
ox\ u ay\ p 2

Equation (4.17) is a new form of momentum equatierived using the method of characteristics. Itsnfdiffers
from that given in [1].
The continuity condition across a stationary jumghe flow is given by

[uh] =0 (4.18)
Thus uh = uhy = why (4.19)
The second equation that emanates from the Lagsaegeation (4.12) isdl = d_y
u v
or v(x,y)=u(x, y)g—y (4.20)
X
At the free surface y = h, so that equation (4i2@omes
v(x,h) = u(x, h)@ (4.21)
dx
Equation (4.21) can further be written as v(x, h) = uh (;_h% (4.22)
X

Application of non linear velocity profile
We consider a nonlinear velocity profile of therfor

2
v(x,y)=v(x,h ZLZ -y (4.23)
hz
Substituting (4.21) into (4.23) we find  v(x,y) = uh j_h%( Zh{z ; %) (4.24)
X
Using (4.19) in (4.24) gives v = uhg_h%[th_-th (4.25)
X

Substituting (4.19) and (4.25) into (4.17) we ofbtai

uh dnh 1 2y* —yh
ush? 9| " "dxhl b’ S (4.26)
h? ox u,h, ay\ o 2
h

Simplification of (4.26) yields.
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_1op* 20y’ d (1dh)_uhy’ d (dnh)_8suhy’(dhY
p oy h?  dx h’dx h*>  dx | hdx h° dx
L Bty (dhY'_ufhfy(dhY’
h° dx h* dx
Integration of (4.27) with respect to y fron¥ 0 to h yields the excess bottom presgirgiven by

o =_ppUith d (1dh ) 1 ) n 1h), 2puh; (dh)' _2pulh (dh) | puih?(dhY’
bottom 3 dx| h%dx 2 ! hdx h? dx h? dx 2h? | dx

which on simplification gives

wh’h d (1dh ), 1 puh’ ( j
* = _2 1 _ 4.28
P P73 dx(hzdxj 2PU o [hdxj o0 dx (4.28)

Multiplying (4.28) by x and integrating the resulith respects tx in the interval (@, a) gives the torque per unit
transverse distance exerted by the excess bottessyme on the fluid in the clockwise direction. $hioy (4.1) this
torque becomes

=2 (1?“) 2 (thdxéalz(@] o (4.29)
pulhl dx{ hdx *dx | hadx 277h" dx

Integrating (4.29) by parts we obtaln after sifiqation

_1fxdh +£(Inh):+ dn dx
6lhdx), 6 hz dx
or T=-2 X—dh nh| + 2 (9 g (4.30)
hax ), ahz dx

Now, asX — +a, h - constar and(ﬁgh] 0.. Similarly, (E—jh] - 0. asX - —a. Thus (4.30) becomes
X X

(4.27)

dh
T= Inh dx 4.31
~<(-inn, + h{ dxj (4.31)
that is, T =—Inﬁ —| —(dh] dx (4.32)
6 h 67h’(dx
or T =—InH +ZK (4.33)
6 6
dh
where = dx 4.34
Jahz(d \J ( )

Now, K as defined in (4.34) can only be evaluaté@rvh is known as a function f

50 Determination of the mean vorticity

On using the torque exerted by the bottom presdigteibution, together with the terms arising from
horizontal forces and momenta, in an angular monmeftalance, we obtain

IS st =S 0 o) - oy 6
Using (3.1) in (5.1) we find after simplification

g_rf+ﬁ+ 2 2'[':g_r‘§+ﬁ+ e o
sty TUNT =t

C‘TZZ % -afhzy]ydy (5.2)

Dividing (5.2) byhf and evaluating the integral we obtain after sifigaltion
g, uhl uhT _of uh ohy cwub (5.3)
6 2¢ K en 2 247 6y
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2 3 2142 4 3
that iS, g+i+£ = gH +u2hl +0fhz _(UU2|']2

54
6 2h h 6 208 247 6 -4
Multiplying (5.4) byg and using (2.5) we find
3 22 4
1437 +6FT = o - A7 36N, oy (5.5)
g gt 4dh
3 3 2 2 4
which simplifiesto ~ —~+3+67 = - QAR 3EH | o (5.6)
F u, U 4hu;
Substituting the continuity equation (2.1) into8)sand using (2.7) we obtain
g3 2
I r=-oh o (5.7)
F u, 4u,
g3 2
or 1-H +6T =—Q+% (5.8)
ah
where Q=—"2 (5.9)
u2
Substituting for T in (5.8) using (4.33) and sinfighg we have
3_
QZ—4Q+4(HF 1J—4InH—28K=O (5.10)
This is a quadratic equation@which can be solved to give
1
H 3 _1 2
Q= 1—(1— +InH +7Kj (5.11)

Solving (3.12) and (5.11) simultaneoudly(F) andH (F) can be obtained and their graphs are sketchEijime 3.
As F - 10, series solutions fa&2 andF - 1 in increasing powers &f - 1 can be obtained. The result is

a=2: +(2-7K)(H —1)+—(l8_49K)(H -1y +—(25_14K)(H -1

(191— 42K ) . (73- 42K)4 s 6 ° (6.12)
RO A2)y gy [ 42K) gl -a)
and F-1= g(H —1)+%(H ~1) +o[(H -1)J° (5.13)
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Figure3: Thewaveheight in theform H-1 and the downstream vorticity@ as functions of the Froude number (F-1)

In terms of F — 1, (5.12) becomes

Q= 4749K2 +§(2—7K)(F —1)+é(18—49K NF -1y +8il(25—14K NH -1 +0(F -1)* (5.14)

Thus the vorticity does not increase from zero dsiretion of the Froude number minus one becausthef
presence of the first term in (5.14). Hence owult€5.14) generalizes [1]

6.0 Discussion and conclusion

Figure 1 shows a steady-flow hydraulic jump withaatrol volume surrounding the jump, and upstream
and downstream depths together with uniform vejogibfiles upstream and downstream of the jumpngshis
ﬁ%’[&l}he classical jump conditions (2.1) and Y2v2re determined. Figure 2 depicts hydraulic jumiilh control
volume for the case with finite mean vorticity dastneam of the jump, since the flow downstream efjtimp will
be obviously rotational at a sufficiently high Fdeunumber. The figure also shows the velocity ithistion on the
downstream side of the jump given by equation (8ith u, as the mean velocity. From the figure, a new jump
condition, equation (3.2), with downstream vorticitas determined. Figure 3 shows the wave heigtitarform H-

1 and the downstream vortici€y as functions of the Froude number minus one (FA4)may be seen in the figure,
H-1 increases gradratically with F -1 near F=1ha same way as without downstream vorticity. Théhoe of
characteristics applied to hydraulic jump was usedetermine the mean vorticity downstream of ar&ytic jump.
We observe from equation (5.14) that the vorticies not increase from zero as a function of Fraudaber
minus one because of the presence of the firstiri(®14). Hence our result differs from [1] imatht generalizes
[1]. If K=0in (5.14),Q increases from zero in increasing power of HFHis is the particular case considered in
[1]. In the present solution, it is expected tHa physical case corresponds to the term undesdghare root of
equation (5.11) approaching zero smoothly as ko. In this caseQ in equation (5.11) will approach the value 2
asymptotically. This is also the maximum value ttet be attained b because it corresponds to g(h 0. Larger
values ofQ imply negativeu(h,), which does not make sense, because it correspmnthe downstream fluid
overtaking the wave. The dashed curve in the figrives the classical result (the result without dstream
vorticity) represented by equation (2.6). The défece between the dashed and full lines for Hemains small as
F increases sin® is limited to 2.

In the case of the non linear velocity profile, a@ice that the mean vorticity increases in trerdasing
power of F-1 (see equation (5.14)), which is défgrfrom the prediction of the linear model. Wepaistice that the
torque determined in (4.33) using the non lineafilerhas a finite value just like the one from timear model. The
difference between the two lies in the fact thewerdetermined using the non linear profile inaeeger decreases)
according as the parameter K in (4.33) increaseddoreases).
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