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Abstract 
 

We determine the period of relaxation oscillations of a physical system 
governed by the nonlinear Liénard equation ε x″″″″ + (ax2 - b) x′′′′ + x +cx3 = 0 where a, 
b, c > 0, 0 < ε << 1, using singular perturbation methods. These methods which 
involve considering matched asymptotic expressions of different layers yield a 
uniformly valid expansion for the above equation and hence the relaxation 
oscillations. The van der Pol equation is a special case of the above equation. 

 
 
1.0 Introduction 
 
 A number of interesting systems of mathematical physics occur which require asymptotic analysis of their 
governing equations. Notable among these are systems which are governed by the non-linear differential equation 
 εx′  = f (x′, x)     (1.1) 
 The question is what happens with the periodic solutions of (1.1) as ε→ 0, in particular if the limit equation 
    f (x′, x )  = 0    (1.2) 
has no periodic solution. Of course, there could be no boundary layer effect in the strict sense since there is no 
boundary.  
 A problem of this type was first treated by van der Pol in 1927 who explained using phase plane analysis 
the occurrence of certain “jerky (or relaxation) oscillations” in electric networks. Subsequently much work was 
done on electric and mechanical oscillations of this kind. 
 Results on asymptotic periodic solutions have been obtained by Levinson in 1942. Other examples of this 
kind of systems are in the gas.  In this paper, we use singular perturbation methods to determine the period of 
relaxation oscillations of a non-linear system prescribed by a form of the Liénard equation  
 εx″ + (ax2 - b) x′  + x + cx3 = 0,  0 < ε << 1, a, b, c, > 0. (1.3) 

Singular perturbation problems have been discussed notably by J. D. Cole (1968), M. Van Dyke (1964) and 
H. Grabmuller (1978) among others. In fact, Cole (1968) applies the method in solving the problem of the van der 
Pol oscillator.  

A singular perturbation problem could be defined as one in which no single asymptotic expansion is 
uniformly valid throughout the field of interest. The process therefore involves getting the asymptotic expansion of 
the three layers involved at a discontinuity. We generalize the procedure of Cole (1968) to obtain the period of 
oscillations by matching as proposed by Prandtl and successfully applied by van Dyke (1964) and a host of others. 
Duccio Papini (1999) discusses the existence of periodic solutions of a different class of Liénard equations which 
also covers our class. 

The resulting asymptotic expansions are matched to obtain a uniformly valid expansion for the given non-
linear differential equation and hence obtain the period of oscillations of the system comparing same with results 
obtained by phase plane methods as described by Bogoliubov and Mitropolsky (1961), Stoker (1950) and La Salle 
(1949). 

We have not bothered to prove the existence and uniqueness of a limit cycle for the given non-linear 
ordinary differential equation (which is fundamental to the occurrence of relaxation oscillations)  
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since this abounds in the literature. 
 
 

 
2.0 Asymptotic xxpansion of the outer and inner layers 

 Relaxation oscillations are periodic motions with nearly discontinuous systems. There are two phases of the 
physical system, namely, a fast phase and a slow phase. And in each phase different physical phenomena dominate. 
In this section we shall use the method of matched asymptotic expansions similar to the procedure of Cole (1968) 
for the Van der Pol oscillator.  Consider the ordinary differential equation 

( ) 032 =++′−+′′ cxxxbaxxε       (2.1) 

where 10,0, <<<> εbca , and ( )'  means 
dt

d
, etc. 

The outer expansion is associated with the limit process ∈ → o, t fixed and has the form 
( ) ( ) ( ) K

o
++= txtxtx 1; εε        (2.2) 

and substituting this into (2.1) and equating coefficients of like power of ε, we have 
( ) 032 =++′−
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xxbax        (2.3) 
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xxcxxxbaxxxax 2
11

2
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From (2.3)   
o
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axb

czx

dt

dx
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    (2.5) 

This is a separable ordinary differential equation and is readily solved to get  

( ) 1
21log

2
log ktcx

c

bca
xb +=++−
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      (2.6) 

(k1 is a constant of integration). 

From (2.5), we find that when dx0/dt  → ∞, x0  →
a

b±  and since the choice of the time origin is arbitrary, we shift 

the curves so that the slope, dx0/dt is ∞ at t = 0, that is, x0  =  
a

b−  for t = 0 [see Figure 1.1] 

Thus, (2.6) yields 






 ++−=
a

bc
a

c

bca
abbk log

2
/log1 , and (2.6) becomes  

( ) t
abc

cx

c

bca
abxb =









+
++−

/1
1

log
2

/log
2

/
o

o
     (2.7) 

We now need the behaviour of x0 near t = 0 and for simplicity we let 
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As 1,0 →→ −
o

yt we write ( ) ( ) L
oo

+−+−= 2

21 11 yyt αα and let µ=−1
o

y  so that  

L+++= 2
211 µαµαµαt  

We now seek to write (2.8) in terms of µ  and thence obtain µ in terms of t by inverting the series.  Now in (2.8) 
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On simplification (2.8) then becomes 
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Noting that since ( )20 µ=t  as 0→µ , then ( )t−=µ  as 0→t . That is, we can reverse the series to get   
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Using these results in (1.10) and noting that ( )µ+
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To find x1 we consider equation (2.4), which can be put in the form  

 ( )[ ] [ ]
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It is convenient to consider x1 as a function of x0 and rewrite (2.12), after some simplification, as  

 ( )
( )

( )
( )( )baxbcab

xbcaa

bxbax

ax
x

cxxdx

baxd

−+
++−

−
−=

+
−

2221

2 312

o

o

oo

o

ooo

o

( ) ( )2

2

1
2

o

o

cxbca

xc

++
−  (2.13) 

Integrating (2.13), with respect to x0, gives  
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where k2 is a constant of integration.  For convenience, let ( ) bcaaab +== /1,/ 1αα
o
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Then (1.11) can be written in the form 
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where   ( ) ( )( )K
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In terms of the original parameters, a, b, c, we have  
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Equations (2.11) and (2.17) together give the outer expansion of (1.1).  We now consider joining the two branches 
AB and CD Figure (1.1) with a boundary layer whose thickness is 0(ε). Since the time origin is not fixed for this 
expansion, we consider the limit process. 
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where δ(ε) is to be determined. For matching to x0 as t →0, the first term of (2.1) is 0(1). We therefore assume the 
inner expansion in terms of t* in the form  
 ( ) ( ) ( ) ( ) ( ) K+∗+∗+∗= ttgtgtx 2110; βεβε      (2.19) 

where {βn (ε) }, n = 1, 2, … is an asymptotic sequence for  ε → 0.  Writing (1.1) in terms of t*, we have  
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Substituting the expansion (2.19) into (2.20) and equating terms of order 1 and β1 (ε) respectively, we obtain 
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if ( ) ( )εβ 00 1 > .  If, however, β1  =  ε  then we have  
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Integration of (2.21) yields  
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In the matching of the inner expansion to the outer expansion, an intermediate class of limits of the form  
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For matching to the other branch of the outer solution CD (Figure 1.2), we expect that t* → + ∞ and from (1.24), it 

follows that abg /2−→o .  Hence, for matching to the first order, abx /2−→o  as t →0+. These then give the 
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first approximation to the size of the discontinuity; x0 goes from ab /  to ab /2−  and hence the first 
approximation to the period. We now integrate (2.24) to obtain  
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and expanding as  −∞→*t   
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Equating powers of t* we obtain 
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with general solution given by  ( ) 41
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In order to see the possibility of matching, we write both the inner and outer expansions in terms of intermediate 
variables,  
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It is clear from (2.32) and (2.33) that no term in (2.32) can match the term 0(1/ηtη) in (2.33). This failure to 

match therefore implies the existence of a distinguished limit and a transition expansion such as would match the 
outer solution as t → 0-and the inner as t* → - ∞. 
 
3.0 Asymptotic expansions of the transition layer and matching    
 

The failure of the outer and inner expansions to match gives rise to the introduction of a continuum of 
intermediate limits, lying between the two expansions, called the transition expansion.   We shall develop this 
transition expansion and match it to the outer and inner expansions.  Consider the limit process   
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Solving this equation (3.8) for V, we obtain ( ) ( )2
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As −∞→t , ( ) K+−+±= tbcaaf /11  

For matching to be achieved with the expansion of xo as t → 0-, we must take the positive sign. From the asymptotic 
behaviour of K⅓ and I⅓, we have that  
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From the transformation, ( ) ( )( )tVdtdaf log//11 = and has proper behaviour only if N = 0.  Equation (3.12) then 
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Similarly we can construct the solution f2 ; and obtain 
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We need to determine the asymptotic behaviour of ∫ ∞−

t
VdV λlog2 .  Using (3.13) and letting α3 = (b/a)(a + bc), we 
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Also, from (3.13), f1 is given by  
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The terms of (3.15) can therefore be determined and hence  
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The transition expansion therefore can be written as  
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We now consider matching to the branch AB of the outer expansion. The intermediate limit is defined by 
Hence the outer expansion can be written in the form   
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For  ρ << η, we obtain  
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The transition expansion obtained using the intermediate variables is  
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For matching we compare (3.20) and (3.21).  The terms ( ) ( ) ( )
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 The terms omitted vanish more rapidly than those matched. Next, we match the transition expansion (3.17) 
to the inner expansion as t* → - ∞ .   At the first zero of the Airy function V(ŧ), the function V vanishes and therefore 
f1 becomes infinite there.  From the behaviour of f1 the matching will take place as ŧ → ŧ0   which is the first zero of 
V(ŧ). We therefore need the behaviour of f1, f2 as ŧ → ŧ0.   V(ŧ) has a simple zero at ŧ  = ŧ0 and so from (3.7) it has an 
expansion near ŧ0 of the form  
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where K is a constant.( )
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The integral ∫ ∞−

t
VdV λlog2 in (2.14) approaches a finite value as ŧ → ŧ0 and therefore the dominant term in  

f2 comes from 
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To express the intermediate limit in this case, we first write t* in terms of t.  From (3.18) 



Journal of the Nigerian Association of Mathematical Physics Volume 10 (November 2006), 211 - 222 
Nonlinear system using singular perturbation methods  E. E. Joshua J of NAMP 

( ) ( )
3

2

3
2

3
2

*
−

−−
−+=−=

ε

εδερε
ε

εδ tt
t  

and if we let ( ) ( ){ },0
3
2

εγεεδ +=
−

t  we obtain ( ) ( )
3

2

0
3
2

0*
−

−
−+=+−=

ε

εσ
ε

ρεεγ tttt
t , where 

( ) ( ) ( ) .log
6

3
3
2

3
2

εεεγρεεγεσ
b

bca +−=−=
−

  We can therefore express the intermediate class of limits in (3.18) as 

 
( )

1fixed,,,0 3
2

0
ppppηε

η
εσε η

−−=→ tt
t  

 

so that    ( ) ( )εση
ε

η
η

ε
ηη

η
η +→−−∞→=⇒= tttt

t
t

t
t 0

3
2

3
2

,0,*
*

p   

Using the expression for f1 and f2 in (3.24) and (3.25) we write the transition expansion in intermediate variables as 
,ησ pp we obtain 
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and from (2.31). the inner expansion becomes 
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The terms in (3.26) and (3.27) match exactly, if we make 
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We finally close the cycle by matching the inner expansion as t* → ∞ to the branch CD of the outer expansion as t 

→  0+, 
a

b
x 20 −→ .  From (2.7) CD can be expressed as both reflection and translation of AB, that is 
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where t* = t  -  ½T(ε), T(ε) is the period on the scale t.  Expanding (3.29) about 
a

b
x 20 −= x0  and letting 

a

b

x
y 0
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we have  



Journal of the Nigerian Association of Mathematical Physics Volume 10 (November 2006), 211 - 222 
Nonlinear system using singular perturbation methods  E. E. Joshua J of NAMP 

( )
( )

( )
( )
( ) t

bca

bca

c

bca

bca

abcbca

bca

bcaaa

bca
a

b

ab
b =

+
+=++









+
+−

+
+−+

+
+ 4

log
24

4

428
42

3
2log 2

Lξξ  (3.30) 

where 
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x 20 +=ξ .   To the lowest order in ξ , we have  
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From (3.24) we have that as t* → ∞, ( ) ( )*3
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Using (3.28) the relationship between t*and t+ can be obtained as 
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Thus the intermediate limit for this matching has ε → ∞, tη fixed  
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We now write the outer expansion in tη from (3.31) as  
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The inner expansion is similarly  ( ) ( ) 
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The period, T(ε) is therefore obtained when we compare the two equations (3.34) and (3.35).  We obtain  
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Thus the uniformly valid expansion of the given equation (3.1) obtained by adding the outer and inner expansions 
and then subtracting the common part, is given by  
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where k2 and k3 are defined respectively in (3.22) and (3.27b) and t* is defined in (3.28). The equation (3.37) 
therefore gives the mode shape of the relaxation oscillation of (2.1).  
 
4.0 Conclusion 
 

We have obtained the following asymptotic expression  
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for the period of relaxation oscillation of the Liénard equation 
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This equation (3.2) reduces to the Van der Pol equation  
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for a = b = 1 and c = 0;  and putting these in (4.1),we have that as c → 0 
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for a = b = c = 1, which fits the results of Cole (1968) for van der Pol’s equation (4.3) using the method of matched 
asymptotic expansion and of LaSalle, Bogoliubov and Mitropolsky using phase plane analysis. 
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