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Abstract

We determine the period of relaxation oscillationsof a physical system
governed by the nonlinear Liénard equations X" + (ax? - b) X' + x +cx® = 0 wherea,
b, ¢> 0, 0 <g << 1, using singular perturbation methods. These ethods which
involve considering matched asymptotic expressionsf different layers yield a
uniformly valid expansion for the above equation ad hence the relaxation
oscillations. The van der Pol equation is a speciahse of the above equation.

1.0 Introduction

A number of interesting systems of mathematicakpts/occur which require asymptotic analysis oirthe
governing equations. Notable among these are sgstgrich are governed by the non-linear differergliation

& =f(x)X) (1.2)

The question is what happens with the periodiatgmis of (1.1) ag— 0, in particular if the limit equation

f(x;x) =0 (1.2)
has no periodic solution. Of course, there coulchbeboundary layer effect in the strict sense sitheze is no
boundary.

A problem of this type was first treated by vam Bel in 1927 who explained using phase plane amaly
the occurrence of certairjetky (or relaxation) oscillations’ in electric networks. Subsequently much work was
done on electric and mechanical oscillations «f Kind.

Results on asymptotic periodic solutions have b@#ained by Levinson in 1942. Other examples o th
kind of systems are in the gas. In this paper,uae singular perturbation methods to determinepéréod of
relaxation oscillations of a non-linear system pribed by a form of the Liénard equation

&”+ (@-b)x’ +x+ o =0, 0<e<<1,a,b,c, >0. (1.3)

Singular perturbation problems have been discusstbly by J. D. Cole (1968), M. Van Dyke (1964§ian
H. Grabmuller (1978) among others. In fact, Col@6@) applies the method in solving the problemhef van der
Pol oscillator.

A singular perturbation problem could be definedoa® in which no single asymptotic expansion is
uniformly valid throughout the field of interesth@ process therefore involves getting the asyngptotpansion of
the three layers involved at a discontinuity. Weeagalize the procedure of Cole (1968) to obtain pgkeod of
oscillations by matching as proposed by Prandtl smtessfully applied by van Dyke (1964) and a bbstthers.
Duccio Papini (1999) discusses the existence abgier solutions of a different class of Liénard atjons which
also covers our class.

The resulting asymptotic expansions are matchexbtain a uniformly valid expansion for the givemno
linear differentialequation and hence obtain the period of oscillatiohthe system comparing same with results
obtained by phasplane methods as described by Bogoliubov and Milsky (1961), Stoker (1950) and La Salle
(1949).

We have not bothered to prove the existence anduaness of a limit cycle for the given non-linear
ordinary differential equation (which is fundaméntathe occurrence of relaxation oscillations)
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since this abounds in the literature.

2.0 Asymptotic xxpansion of the outer and inner layers

Relaxation oscillations are periodic motions witharly discontinuous systems. There are two phasbe o
physical system, namely, a fast phase and a slaseptAnd in each phase different physical phenordenanate.
In this section we shall use the method of matcmanptotic expansions similar to the procedure @t @1968)
for the Van der Pol oscillator. Consider the oadindifferential equation

ex”+(axz—b)x’+x+cx3 =0 (2.1)
wherea,bc>0, 0<¢e<<1, and () means%, etc.

Theouter expansion is associated with the limit prodéss o, t fixed and has the form

x(t;g): xg(t)+¢9<1(t)+... (2.2)
and substituting this into (2.1) and equating coefficiefiike power ofe, we have
(axf —b)xj +xX°+=0 (2.3)
2ax X', + (axf - b)x; +X +3cx’Xx = —xo" (2.4)
3
From (2.3) & _ x*ez (2.5)
dt b-ax
This is a separable ordinary differential equatod is readily solved to get
blogx - a’ZLCbC log(L+cx?) =t +k, (2.6)

(k; is a constant of integration).

From (2.5), we find that whedxy/dt — oo, Xy — i\/E and since the choice of the time origin is arbjtrave shift
a

the curves so that the slokg/dt is o att = 0, that is, ¥ = —\/E fort =0 [see Figure 1.1]
a

Thus, (2.6) yield:k, = blogvb/a —%bclog(a+@j , and (2.6) becomes
C a
a+bc 1+cx’
bloglx b/ a)- | S 2.7
og(xo, a) 2c og(1+bc/aj @7
X,

We now need the behaviour gf xeart = 0 and for simplicity we ley, =

a+b 1+cy’
blogy, - lo — | =t 2.8
9. 2c g(1+ bc/aa) (28)

(scaling) (2.7) therefore becomes

Jblc

Ast - 0,y - 1lwewritet= al(yo —1)+a2(yo —1)2 +---and lety —1= y so that
t=au+au+a,u’+--
We now seek to write (2.8) in termsjofand thence obtainin terms of t by inverting the series. Now ing2.
logy, =log(L+ 1) = =44 + % +Our*)
o {1+ bey? / a} o (1+ belL+2u+ ,uz)a] ~y
1+bc/a 1l+bc/a

= log 2bc L+ bc _ 2(bcf 1+ §( bc ]3_2( bc jz L+
a+bc” [(a+bc (a+bc) 3la+c a+hbc

On simplification (2.8) then becomes

and
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ab 2+ab(a+5bc) 3

B a+bc'u (a+bC)2 +O(ﬂ4):t 29)

Noting that sincet = O(,u ) asu - 0,thenyu= (\/ ) ast - 0. That is, we can reverse the series to get

= =14 (0 + (1) + (2.10)
. . — [athc
which together yields H N
2ab ab(a+5bc )
- + 2 3 — 0
a+bc /uuuz (a+bc) :ul
[,U 20, |+ —aba SbC) 3uty, =
Ca+bet T T g e T

2
and solving the last two equations yie u* :LSbC, u :E[a+5bcj ‘/ ab
6ab 15\ ab a+bc

Using these results in (1.10) and noting tkat /[gjl(H ,u) we obtain

_|b a+bc a+5bc 5 (a+5bc)’ /2
_\E{“V ab ot 6ab (1)+ﬁ[ ab j\/a+bc( }+O[ ] (2.11)

To find x; we consider equation (2. 4) which can be put éftmm

gt b-ax)]- x[1+30¢]= 94X (2.12)
It is convenient to consider &s a functlon of xand rewrite (2.12), after some simplification, as
d(axgZ - b) _ 2ax. 1 a(a + 3bc)xg 26X
X =yt : - > (2.13)
dX X +cX (@¢-bf bx bla+bc)ax’-b) (a+bc)(L+cx’)
Integrating (2.13), with respect tg, gives
x(1+cx2) 1 logx . a+3bc
== - =+ oglax’ -b)+k, - logll+ cx? 2.14
ax —b {axf—b b 2b(a+bo) ol -b)+k, b gft+o) (2.14)

where k is a constant of integration. For conveniencea, =+/b/a,a, = (1/a)\/a+ bc

a_a+5bc\/Ea=£ a+5bc)’ b
> eab Va' ' 72 ab a

Then (1.11) can be written in the form

x =a +ay-t+a,(~t)+a,(-t)% +o[-1)*) (2.15)
so that
2
2 )= L 2aa,tal vy | (20a,+taf) _aa,taa, |
Iog(axg b) IogZaaga'1+Iog( t)2+—2a0a1 ( t)2 [}/{ 2aa, 204, ( t)+...

1 1 {1_ 200, +a?(-t)? J{( 20 0, +afJ2 _aa,+aga, }(—t)+..}

a‘-b  2aga,(-t)? 2a,a, 20,0, aa,
Therefore (2.14) becomes

__ l+ca® | (L+ca?)(a+30c) Iog(—t)}/2 1 A g f+ca’ (a+30c)
4a’a a(-t)  4aba,(a+bc) (_t)% 4aaga'1 aaa, "l 2bla+bc

2aa,+a} 1 k,C 2 1
-———=—L -—loga, +——Ilog|l+ca —
daa’al b 9+ be of ) (-t)>

log2ca.a,
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where A= (1+ Ca'f)a1 +2a’ac— 2 (1+ caf)(Zagcr2 + af). .. (2.16)

1

In terms of the original parametess b, c, we have
—t)% -

x = 1, a+3mc log( t)2+ 1 _t%{bc a
4/ab(-t) 4abya+bc (-t)?  4abya+hc 3

+ 2k2b(a+ bc)+ (a+ 3bc)|og Zw/b_[a;bc] + 2(a+ bc)Iog\/b/ a- 2bc|ogaJr bc} +... (2.17)

a
Equations (2.11) and (2.17) together give the cexpansion of (1.1). We now consider joining tlve branches
AB and CD Figure (1.1) with a boundary layer whttgekness is @). Since the time origin is not fixed for this
expansion, we consider the limit process.

(5 - o,tmzt_—f(‘g) Fixedj (2.18)

+

whered(g) is to be determined. For matching tpas t - 0, the first term of (2.1) is 0(1). We therefors@ase the
inner expansion in terms of t* in the form

x(t:€)=golt D+ Ale)ant D+ A O +... (2.19)
where 3, (€) }, n=1, 2, ... is an asymptotic sequence for- 0. Writing (1.1) in terms of t*, we have
2
gt;f+(zax2 —b)%+g(x+cx3):o;s -0 (2.20)

Substituting the expansion (2.19) into (2.20) anqdating terms of order 1 aftd (€) respectively, we obtain

2

49 ,(ag?-b)99- =

T he o
. dt ) dtd (2.21)
gl+a2_b gl+2a go:O
dt™ ( g )dtD 9.9, dt”

if 0(3,)>0(¢). If, howeverB, = ¢ then we have

2
99: + (ag7 ~b) %% + 2.9, %9+ +cg’ =0

dt” dt” dt*
Integration of (2.21) yields
3
99. , 39, _pg =k, (constant) (2.22)
dt 3
3?j + (agf - b)g1 =k, (constant) (1.23)

In the matching of the inner expansion to the oexgransion, an intermediate class of limits offtihven
[e Loy =129) fixed], N wp -0
n £

is considered, so that nt, + &) - 0, ¢, < 0)

ot oe-0)

sincex — «/b/a ast - 0, for matching to be possible to the lowest order must also have thg, - vb/a as

t =

t* - -0 andk, = —%b\/b/a , and (1.22) becomes

dg, __al |[b-g, b
I o=y Py 02

For matching to the other branch of the outer smu€D (Figure 1.2), we expect that ¥ + o and from (1.24), it
follows that g, — —2v/b/a . Hence, for matching to the first ord x, — —2vb/a as t-0". These then give the
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first approximation to the size of the discontiguix, goes fromvb/a to —2yb/a and hence the first
approximation to the period. We now integrate (2®4obtain

1 1 b 1 b
a lo -~ + lo + — [=—t* 2.25
T g[,/a goJ 5 g(go Z\EJ (2.25)

C _ b ¥ Iog(—t*)
and expanding et* - —o 9, _\/;+t_*+ yth (2.26)
and so (2. 25) becomes, on substitution of (2.26)
1 N2 Iog( ) ¥, 1 log’(-t" . log3vb/a L1 log(—t*)
an/a V. aJ/blay, V aJ/bla t* 3 dBvb/a t7?
_logy,  logt-t) _ v, log(-t) , v, log’(-t) . _ .
K's 30 oy, t 6oy o
Equating powers of t* we obtain
1 1 |b
=LV rm g
so that (2.26) becomes
1 log(-t*)
n ——— + 2.27
9.2+ J_ t* 3byab t° (2.27)
with general solution given by dg, _ (b— agf)g1 =Kk, (2.28)

dt*

whereh; is a constant andygis any particular solution. We can find the bebaviof the particular solution as t*
—t%

%, —(—£+ilog( v _1 +...jglp =k

e — =k,. Assuming the particular solution in the form

- o, Thus,

t* 3 t? bt™
g,, = At+ B log(-t*) +C ---. The coefficient A B, and G are readily determined to give

2(_ g%
o, = ';{t*+ log(-t) - "’gt#”,tm—m (2.29)

if k, #0, the particular solution dominates as-t*- o, and so the general solution is given by

Kl 1 e 1 [ log*(—t) 1 1 log(t) V[«
glp—?{t +%Iog(t) 3b+0(—t*2 j}+hl{ J_t O( o7 j}t > (2.30)

t* - -
The inner expansion therefore becomes

b 11 1 Iog(—t*) kt* k k hi
xlt; €)= ; o BlER——— “Io —t*) -2+ .. +.. 0+
(2.31)
In order to see the possibility of matching, wetavthoth the inner and outer expansions in termstefmediate
variables,

tzmn+5(£) — O,/?/g — 00,/] — O, t*:% — _00,(t/7 <O)

We can therefore write thmiter andinner expansions respectively as

(te)—\/51+{1+ a+bc\/7 a+5bc (ot —8)+. }

1 a+3bc 1
1 - logl-mt =J)+...;+... 2.32
+£{ ¥ ab(‘mn‘5)+8ab\/a+bc \/ﬂt”—d ogl-1m, = o)+ }+ (2.32)
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b 2 log(-nt/ AT, K, K, 2
X(tié‘): E+ﬁmi_3\7£ Og((m/ﬂ) 5)+.._+[;’1(5){ 3’? +9b|og( n, /5) % ,—ﬁ,ﬂ:j}t”
(2.33)

It is clear from (2.32) and (2.33) that no term{2r82) can match the term 01{) in (2.33). This failure to
match therefore implies the existence of a disu"ﬂ;igad limit and a transition expansion such as danéatch the
outer solution as - 0'and the inner as t* -

3.0 Asymptotic expansions of the transition layer and matching
The failure of the outer and inner expansions tachaives rise to the introduction of a continuuf o

intermediate limits, lying between the two expansiocalled the transition expansion. We shalletigy this
transition expansion and match it to the outeriandr expansions. Consider the limit process

e ot=" - ple) fixed, 1>>v(g) >> & (3.1)
vle
The first terms in each of the expansions (3.2) (@r83) are already matched, thus the transitiggaegion assumes
the formx(t; ) =+b/a +a,(e)f,(t) + o,(e) £, () +...... (3.2)

and the equation (1.1) becomes

2 2
%(‘%%%*‘ Zd j (Zaﬁaf +2aﬁazf2+aaff12+. )1[J%+
v

+0, %+ }+\/B+Jlfl+azf2+~-+c{b EJfﬁ(fff +0, f)
dt a a

ala
b b
+3l—olf?+0’ > +6 |—00,ff,+.... =0 (3.3)
a a
The orders of the terms associated with derivatifesach order are 5% o i «~ 1. The intermediate limit is
\Y;

that in which all these orders are equal. To, = 5%, V=g and, for the equation fds to contain forcing terms,
we must have that, = ¢”. The transition equation (2.2) becomes

x(t; €)= \Eu% )+ et @)+ =t "‘;3(5) (3.4)

From (3.3) we have the equations

d?f b, df b
L4 2a—f 2L+ [Z(1+=)=0 3.5
dt? E“\/gldt Va( :) (3:5)

ﬂ+2a\/§—d(flf2)+aff%+(1+%)fl=O (3.6)

dt? dt
V'(t) 1

a\/b/av() avb/a dt
d _b(a+bc)
- 4+ " "7/
at? a

This is a form of the Airy equation, the generdltion of which can be written in terms of the nfoeti Bessel

functions of the first and third kindl, andK, respectively. If we ler = -at where cf’z(b/a)(a+b¢, then (3.7)

becomes 3—2\2 -1V =0 (3.8)
r

Iog(V (t)) we obtain

Integrating (3.5) wit f,

V=0 (3.7)
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Solving this equation (3.8) faf, we obtain V =M 2K (ggr%)+ N7’2| (%r%) (3.9)
b2 %

where M, N are constants. £t - —oo, K% and I%

K%(;g,/(b/aiim bcj(—t)%)z %~3r|(b/a)(a+be)| (- t) e 7 /o a){a+ be) (~t)*

5 1 (3.10)
{1‘ 48Torafa+bo) (1) }

and

I}/(%,/fb/ajZa+bc5( %2 )= %3n|(b/ a)(a+be)] (- t) e 7 f[b/ a)fa + bc) ()2

{1_ 5 L +} (3.11)
48(b/a)a+bc) (-t
Ast - —oo, f, =i(1/a)\/a+bc J-t+.

For matching to be achieved with the expansion,aéx — 0, we must take thpositive sign. From the asymptotic
behaviour oK., andl.,, we have that

M\/\’? R 5 1 E\E gt s 1 (3.12)
(t) R ( ) {1 48\/§ (—1% * }Jr 2 KR ( t) © {1 48JR (_1)% * }
whereR = (b/a)(a + bc), so that

~

éﬁ(—t)32+..-, if N0
IogV(t)=
%\/E(—t)% +o,if N=0

From the transformatiol f, = (1/ a)d/dt(logv(t))and has proper behaviour onlyNf= 0. Equation (3.12) then

— 3
becomes V(t)= M3 Rg(—t)_?zm‘)Z 1—Li3+--. (3.13)
2 48JR (— 1)5
Similarly we can construct the solutifn and obtain
_D, [a/abC, logV |df, +ab ., 2(@+4bc)..
f,=—%- - —1- - [_V?logvdA (3.14)
v? |bla+bc) 3 |dt 6b 3a/abV?
We need to determine the asymptotic behavimjimv2 logVvdA . Using (3.13) and letting® = (b/a)(a + bc), we
2 A 3
haveV:(t) =L/T(— at)ze )2{1—2—54(— at)? +} so that [\ Vv?logvda =
2 Ay _
3M ﬂ(_m)le S(-a)? 1_i(_m)% _ |Og( O't)+_ O M\/gT (( )?3)
4 8a 2
Also, from (3.13)f; is given by
V' 1 b 1 5(-t) [ 1 j (3.15)
f, = === bc)-t - o —
S a3 RS its

-t 32\/[%)(6\ +be)

The terms of (3.15) can therefore be determinedhande
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f~a+5bc(_t+ a+3bc | (-t) . 1 C, a+hc a+3bc M3

= 0 + - - lo
? Gaab 8ab+/ab +c gJ—_t J-t ) (bj(a+bc) 12aby/ab+bc  2abyab+c 973
a
a+3bc b
+ log = |[la+bc)+--- 3.16
24ab\Jab+c g(a]( ) } 10

Thetransition expansion therefore can be written as

_ b+£1 va+5be + 1 I g (a+5bc)(—t)+ a+3bc o (—t)
X(t’g)_\/; { Y 4Jab(~t) } { 6avab  BabYabbe UVt

b
1 C, a+bc a+3pc | MyJ37_  a+3pc 05(a+bc)

+ - - 0 I
J-t b 12abyJa+bc 2abya+bc 973 24abya+bc S
2 \/7(a+bc)
a

+... 04

(3.17)
We now consider matching to the branch AB ofdbter expansion. The intermediate limit is defined by
Hence theouter expansion can be written in the form

_t=ple) oo
-0t ——”(Er fixed, €% <<n=<<1 (3.18a)
that is, t=nt +ple) -~ 0, t= /7t; - =00 (3.18b)
£3
b atbc/-nt —p a+5bc(/7t —p)— 1 a+3bc (/7t —,0)
Xlt,g)=[—+& U + U +.o..+ &2 + lo )
t.e) \/; a 6avab aablyt, - p)  8ab/ab+be g\/—/ﬁ”—p
1 _a-bc a+3nc fg a+hc b_ (a+bc)
+Za.\/(—/]t”—p)(a+bc){(a+bC)K2 & +—23 log2 (a(a+bc)j+—b Iog\/; clog{—a H}+
) (3.19)

For p <<n, we obtain

&)= 9+\/a+bc+_ . p +m+a+5bc_ )ee 1 N Yo, ..
X(t.) \/; a [/ﬂn 2\/_,7tn J 6a\/a_b( nt, P) {@(_m”) 4\/ab(—/7t/7)2

a-bc
6b

L_a+dc logl-nt,) o L P N 1
gabva+bc | [-nt, (-t ) 2(-nt, 2a,/(-nt, )(a+hc)
+ a+21;>bc log2+ 3a;b5bc Iog[gj + a;bbc Iog(a+ bc)+ cloga}} +eee (3.20)

Thetransition expansion obtained using the intermediate variables

7 |09(—l7t”)+...]

[(a + bc)K2 -
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be/-1t 5 2
X(t,g):\/%+gl{a+ > T, £ +-- }+ 3{ a+ 3 [Iog(—/]t Iogf]
&3 n

4\/a_b(—/7t) m,/ -nt,
a+5bc( l7t) 5% C, _ atbc ~ a+3bc OgM\/§T
6aJ_ £ \//7'[ Z\/b (a+bd 12abJa+hc 2abya+hc 2
a
a+3bc b
————lo a+bc)+--- 3.21
i g aro) | @21

Iog(

For matching we compare (3.20) and (3.21). Thmmb(,/—qt” ) 0(—/7tq), )] all match exactly. We
nt,

therefore consider the ter } . Equations (3.21) and (2.2) will match if we oke p andK, as

1
[_,7»[”

(£)= a+3bC£|Og£
\/a_bC2 a+3bc |OgM\/§T a+3oc 1 bc at+t3bc, (b
.= b(a+ bc) b(a+ bc) 2 2b(a+ bc) l0g2 b(a+ bc) {_ * 6 Iog{—) (a+be)

(3.22)

a+bc|og(b) bclo{(a%abc)}

The terms omitted vanish more rapidly than thosgéched. Next, we match theansition expansion (3.17)
to the inner expansion #s — - . At the first zero of the Airy functio¥(#), the functionV vanishes and therefore
f; becomes infinite there. From the behaviouf; dhe matching will take place as- # which is the first zero of
V(#). We therefore need the behaviourfpf,as¢ - t, V(#) has a simple zero at=# and so from (3.7) it has an
expansion neay of the form

v(t)=m{-K(, t)wt (t-t,) +olt-t,) (3.23)

J

K( j(a+b
whereK is a constarV(t) =M —K+aTt0(t—to)2 +0{t-t,)+---+. Thus ag - to

1 [ 1 bla+he) .
flit)]=—— -——2t \t—t,) +0¢t -t 3.24
= - vy o) @29
The integralj;v2 logVvdA in (2.14) approaches a finite valuetas # and therefore the dominant term in
df, 1 Iog(t t) 1
f, comes from—lo V—L. Thus f, = + 3.25
2 3B 0 dt 2" 3pyab (t, -t) O((to—t)zj (3.23)

To express the intermediate limit in this case fivet write t* in terms oft. From (3.18)
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_t- Ie) _t+ e%p - 5%5(5)
£

t*

£

and if we et J(£)=5%{to+y(£)}, we  obtain t*zt—toy(gg)+£3p=t+t0—za(e), where
£ 3

a(s) = y(e)—g%p = y(g)— aﬂ;bc £ loge. We can therefore express the intermediate clalsit$ in (3.18) as

—L_U(E), fixed, 5% <<n=<<1

2
3t % t

so that t =£1 :,7—2”
3

n

=>t*

= -, [t, <0) t=t, - nt, +ole)
£
Using the expression fdy andf, in (3.24) and (3.25) we write the transition exgan in intermediate variables as

0 <<, we obtain
B Iog(/]t”+a) +“}+
{ 1@ +b<a+b<>>to(-'ﬂn)+..}_ elodt) ,326)

2

winy

B b+ 2 1 _ b + +0)+--Ltg?
xte)= f{@(,,t”m) Skl v 5{ wJabl, +0)
- Byab(-nt, |

and, if
b
X(t,e) = \/: +&
a = |Jabl-pt,) [-mt,)  3afab
and from (2.31). the inner expansion becomes
2 2 2
b £ g* Iog(—nt”) £3loge

a ab[-nt,) i 3vab(-nt, ) ' 9a/ab(-nt, | *
sl ol gt

X(t,g):

(3.27a)

3 % 2ml-nt,) Jab(-nt,

55
The terms in (3.26) and (3.27) match exactly, ifmake

b(a+ bc)t o= £*loge

R N

2

Thus, e)=o+&p= %8'59[3@ +3bc) - LJ 3e)=et, + Ye) =t + % {3(a +30c) - i}

(3.27b)

ab ab

« (1)), _ % _&loge _ 2
and t —[SHt T {3(a+3bc) @}} (3.28)

We finally close the cycle by matching timmer expansion as t*. o to the branch CD of the outer expansion as t

- 0" x - —2\/E . From (2.7) CD can be expressed as both reflectidrntranslation of AB, that is
a

X, a+bc, |1+cxt |_
blog - - lo =1 3.29
g( '_ab] > o9 e (3.29)
Cc

wheret’ =t - ¥4I(g), T(€) is the period on the scale Expanding (3.29) about, = —Z\/E Xo and lettingy, =%
a

> o]

wehave
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blog2+ 3ab g+[2_ ala-+ho) _4(a+bC)abc} o+ a=bc, _a+4bc
)

2\/B(a+ ao) LB a+doc)  (a+4bc) T e 09 e (3.30)
a

2c a+bc
whereé = x, + 2\/E. To the lowest order i&, we have
a

m\cr

t*-blo 2+ lo
g 2c 9 aroc a+bc

2\/7 Z\/7 a+4bc {t* b|og2+ ga+4bc}+...
a+bc

From (3.24) we have that &5 - o, go(t*) = —ZJE + O(e‘3‘*) and the particular solution gof (1.28) satisfies the
a

(a+4bc) +bc, a+4bc
{ } (3.31)

d
equation% +{3b+ O(e’s‘* )}g1p =k, =- b:/gc) t,log ZZZE)CC from which we have
a+ bc

=- +.-- ast* - oo, 3.32
glp 3a\/_ ( )

Using (3.28) the relationship betweggandt” “*"be obtained as

o= @{t +47(e)-eh, - £100 {3(a +3bc) -%}} (3:33)

Thus the intermediate limit for this matching lsas o, t, fixed

1 nt 2 _¢&loge 2
wheret = t*,e<<n << 1l,andt* ==L oo, t" =-1T(g)+ &%, - a+3bc)———}+nt
. H;j n a ( ) " 1 {3( ) ab} 7L,

We now write theouter expansion intfrom (3.31) as

x(t,g):_z\/}[z(a*“m‘) ;T(£)+£§t0—(slog£)w+/7t -ioge+ 2+l {a+4b0j}+ +0(¢)(3.34)

3a/ab 18b a+b

Theinner expansion is similarly ~ X(t,&)= 2\/6+£§(_a *be, J+.-.+ﬂz(g)gz+-~(ﬁz <<g§](3.35)
a

3aab
The period, T¢) is therefore obtained when we compare the twatagus (3.34) and (3.35). We obtain
a+bc, (a+4dbc 3(a )
Tle)= lo 2log2+2——L g3 +0¢lo 3.36
(e)== 5( b ) og2+=—" &%, +((¢loge) (3.36)

Thus the uniformly valid expansion of the given &tipn (3.1) obtained by adding tbeter andinner expansions
and then subtracting the common patrt, is given by

b Jatbc —  a+Hc a+3dod-t) atbc, a-hc
Xel= \f e {M(-t) gab/a+bo/—t r[ “1ab

+a+3)clogz\/6(a+bd+Mla;\/6+cloga+bc+.--+ 1 }+...+ t 1 'Od"zt*)+...(3.37)
4ab a 2abfatbc Va 2a ~ a a+bc Jabt F/ab t*

*{5;3](“@'09"‘*) +310}+. -
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wherek, andksz are defined respectively in (3.22) and (3.27b) tns defined in (3.28). The equation (3.37)
therefore gives the mode shape ofrHlexation oscillation of (2.1).

4.0 Conclusion

We have obtained the following asymptotic exprassio

_a+hbc a+4bc) 3(a+3bc) 2
Tle)= © ( a+bcj 2bl0g2* = e ¢ t+Oleloge)  (4.1)

for the period of relaxation oscillation of the had equation
9("+(ax2—b)x'+x+sx3=0, alt>~0 0<e&=<<1 (4.2)

This equation (3.2) reduces to the Van der Pol tamua

d’y 2\ dy
-l-y’)—+y=0 0<&=<1
dt? ( y )dt y
fora=b=1 andc = 0; and putting these in (4.1),we have that as0

a+4bc) _ 3bc \_ 3Bbc 1( 3bc 1 3c Y _ 3bc
og =log 1+ += =———,c=<<1 and so
3 a+bc

£ (4.3)

+bc a+hc _a+bc_§ a+bc a+hc
T(e)=2" be 53¢ _ohjog2+ 3(a+30c) £, +0(glog &)
c a+bc a+4bc (4.4)

=3-2log2+3¢’t, +0(¢log )
for a=b =c = 1, which fits the results of Cole (1968) for vder Pol's equation (4.3) using the method of madche

asymptotic expansion and of LaSalle, Bogoliubov Eittlopolsky using phase plane analysis.

Fig. (1.1)

Xo— JBbpq ——
ast— o \
NEE

—\ba
D xo— - 20b0
% ast— o"
2Nba | — 92054
< as tY—+ oo
Fig. (1.2)
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