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Abstract

In this paper the dynamic analysis of a simply supmrted
Bernoulli-Euler beam subjected to a distributed loa was investigated.
The simplified form of the mathematical expressiondefining the
dynamic displacement of the beam was formulated usj the variational
Indicator of the Hamiltonian principle. The method of Integral
Transformation was used to obtain the series solun for the governing
equation. The effect of the various beam parameteron dynamic
deflection profile of the beam was simulated, it wa observed that the
contribution is mainly done by the first mode and lgher modes of
vibration can be neglected.

1.0 Introduction

One-dimensional continuous dynamics models leaBatial Differential Equations (PDE) of
motion. In particular, Partial Differential Equat®arise when the generalized coordinate is aifumof
two (or more) variables. Beam elements may staretkd energy by the transverse translation of éssn
and (or) by the rotation of its rotary inertia abam axis perpendicular to the plane, and it mayest
strain energy by its bending deformation and (t&)shearing deformation. Several beam models that
account for various combinations of this energyagie mechanism have been used by analyst to account
for specific aspects of a dynamic phenomenon.

The problem of vibrations of elastic structuresreunder the action of loads has been the
subject of research by several mathematicians,ighiysnd engineers. Initially, the problem of ¢ias
beam subject to loading, originated mainly from #pplications in the field of transportation such a
bridges, railways and buildings such as floors, etc

Ayre et al, [7] studied the effect of the ratiotbk weight of the load to weight of a simply
supported beam for a constantly moving mass lohdy Rlso obtained the exact solution for the itdini
series. Kenney [3] found the possible velocitiestf® propagation of free bending waves and studied
their relation to the critical velocity of the beaie also presented an analytic solution and resmna
diagrams for a constant velocity of a rapidly mavioad on an elastic foundation including the effafc
viscous damping. Lee et al, [8] developed a fieiement model for static and free vibration analysi
a compressed beam resting on an elastic founddaftiay obtained accurate solutions for uniform, ramp
load with minimum number of element.

In most of those works that deals with distribuliealds, the weight of the beam is not included
as part of the load. Hence the purpose of our ssitty focuses on the dynamic response of a Belinoul
Euler beam with a distributed load subject to avesise excitation as with Aiyesimi, [1], where the
weight of the beam is also considered as partefdhd. The governing differential equation of rooti
is derived using the familiar Hamiltonian principlen analyzing the resultant equation of motion
according to Kreysiz [2] we invoke the finite Faaritransformation on the spatial coordinate and the
Laplace transformation on the time coordinate t@iokthe results.

2.0 Mathematical formulation

The following is a free-body diagram of a Berncdliler beam with a uniformly distributed
load
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Figure 1 Displacement of a Bernoulli-Euler Beam
W(X,t) - Generalized coordinate

According to Spiegel [4] for a beam undergoing fieat deformation we ha\4et:Xy =0. Also

'[ j j dxdydz (2.1)
. . . . -MY
From technical mechanics of solids for Bernoullidtibeam E. " = (2.2)
and
1 0°w M,
e =" (23)
P 0X El
2%
1+ alv
0X
Mj — Bending moment
O - Radius of curvature of the beam in the plane. €23) can be rewritten as
M, 0*w(xt
b = —(2 ) (2.4)
El 0X

ow
given that (a—j is approximately unity and substituting equati@@4) into (2.2) we obtain
X

9°w(x,t)
O=-y———7 2.5
x=7Y 92 (2.5)
2 2
By virtue of equation (2.5), (2.1) become¥; = JHVOL > {a\g—();’t)} ydxdydz  (2.6)
X
= SO o o
According to Timoshenko [5],J.J y’dydz = |
yz
Bl [ 92w(xt) ]
ov =] { 9w(x,t) )} dx (2.7)
0x
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Equation (2.7) is the strain energy function forekrly elastic Bernoulli-Euler beam. Hence follogvi
Kenny [3], the governing differential equation obtion is therefore;

0° 0w 0°w
and the corresponding natural boundary conditiavesngas;
2 2 aZW
M %t‘j’+ Kw = :{EI ‘; "2"} F(t) at x=1andEl PV =0at x=I (2.9)
X X
where

E - Young modulus

| — Planner moment of inertia of the cross-section
El — Flexural Stiffness

p - Density

A — Cross sectional area

W(X,t) — Transversal displacement

f (X,t) —loading (distributed force)
We consider in this study the dynamic responsesifrgly-supported Bernoulli-Euler beam subjected to
a distributed loadf (X,t) givenas;

f(xt) = E(l—I—XJsincT)t 2.10)

where P -Uniform loading/unit-length; X — spatial coordinate] — Length of beam,& - Circular
frequency of harmonic forcing functioi- Time
Following Aiyesimi [1] a Bernoulli-Euler Beam witlsimple end conditions satisfy the boundary

02w 9°w
conditions: | W(X,t), — = Qand W(X,t),— =0. The corresponding initial
aX2 x=0 6X x=I

o)) g

condition for the problem is given a% X,t); P

3.0 Solution Technique

Taking the Finite Fourier Sine transformation of tipverning equation of motion with respect
to the spatial variabl& we have;

4.4 2 D
N7 _ dw _PI . _
El ——W(x,t) + pA—- = —sinat (3.1)
I dt nn
The Laplace transform of the above with respethédime variable yields;
4 = —
n*mt ~ ~ Pl w
El ——W(n,t) + § pAW(n,t) = —| — (3.2)
I nir| g +°

~

To obtain the Laplace inverse of equation (3.2haee
¥y Pl — o af= Snat
L {f(s)}zmsmwt, Ll{g(s)}z -

The Laplace inverse transform of equation (3.2hésConvolution denoted by the integral.

I; f(t —u)g(u)du (3.3)
— Pl i
w(n,t)= MIOSnw(t ~u)Snaudu (3.4)
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- Pl cosmt _. sinat
w(n,t) = sin(a +w)t ———cos(a +w)t
(n.H) 2a Mnn{(aﬂﬂ) ( ) (a +w) ( )
sin ot cosaot sin ot sin ot
- sin(a —w)t - 7003(0 w)t + }
(a+w) (a-w) (a -w) (a -@)
Finally, on taking the inverse Fourier transform & we have;
2P
w(x,t) = B - snx[(smwt - Zsin wt} (3.5)
ﬂ n=1 n I a

oL
where ( j EI Klz[l_wz]
a

4.0 Numerical Simulation

The displacement profiles of the beam are displaced graigtiicavhat follows demonstrating the
effect flexural rigidity and the damping parameter on the &ugd of vibration,
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Figure 2: Variation of dynamic Magnification factor with th ree different frequencies

5.0 Discussion of results and conclusion

From the dynamic profile of the beam it is observeat the beam has an infinite number of
degree of freedom and more than one mode of vibrationerizy with each mode having a different
natural frequency. The lowest natural frequency of thenbearresponds to the fundamental of the
frequency of the beam, while the corresponding mode of vibraifound to be the fundamental mode
of vibration which conforms with the results of Kenny [3]
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Figure 6: Deflection distribution for different val ues uniform loading /unit length
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Figure: .7 Deflection distribution for different values of stiffness
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Figure: 8 Deflection distributions for different values of stiffness
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Figure 9: Deflection distributions for different values of stiffness
The resonance condition occurs for the beam when the fofceggency of the load
corresponds to the natural frequency of the beam as obtajrtguidnel [4]. The results also show that as

the value of the forcing frequendyo) approaches that of natural frequen(@y) i.e. as2 approaches
a

unity the magnification factor grows rapidly, artts ivalue at or near resonance is very sensitive to
changes in the amount of damping. The maximum vafuke magnification factor occurs for a value of

w slightly less than unity. It is also establishexdfaund in Kreyszig [2] that the higher modes of
a

vibration are generally neglected when consideaimfistributed load. The result of this work shotstt
this is because the contribution to dynamic disgtaent is mainly done by the first mode and also the
characteristic shape of the first mode is simitethie load distribution.

Also it was observed that the actual beam shapebeaassumed by truncation in the series
solution obtained, and the harmonic of the fordiregiuency are multiple of the forcing frequency and
they can cause resonance if they correspond tadleral frequency of the system. Finally it was
observed that the amplitude of vibration increagi#s increasing forcing frequency.
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