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Abstract

This paper analysis the dynamic stability of a dynamically oscillatory
system with slowly varying time dependent parameters. It utilizes the concept of
multiple times scaling in an asymptotic evaluation of the dynamic buckling load of
the imperfect eastic structure under investigation. Unlike most similar
investigations to date , the time dependence is explicit in the formulation and this
creates a situation of non-autonomous differential equation that accurately models
the dynamic stability of the structure .The dynamic buckling load is obtained
nontrivially and the results are found to generalize earlier results obtained for step
loading situation. It is established that the results depend strongly on the first
derivative of theload function evaluated at theinitial time.

1.0 I ntroduction

This paper is concerned with asymptotic solutionaopurely nonlinear oscillatory system where the
structure involved is suddenly trapped by an explitime dependent loading history that is dynaaflic slowly
varying over a natural period of vibration of thieusture. Over the years, most of the investigatitmt have
received attention have been those in which thdimgahistories prescribed do not prescribed thee tirariable
explicitly. Such loading histories include stepdo®, impulsive loading and rectangular loading agathers.
Exceptions however exist in the sense that within $ame period specified, there were few otherstiyations
involving loading histories in which the time varla was explicitly expressed. These include sueditgy histories
as periodic loading [1] and triangular loading [@thers include investigations by Aksogan and Sfi[8] , who
analyzed a case where cylindrical shells were stdojle to a time dependent pressure varying asaempfunction
of time, and Svalbonas and Kalnins [1] , who depetl new computer programs for the dynamic bugkliof
shells under a general time dependent loading. Exiwe such few cases, there has been a dearthalytecal
studies of dynamic buckling investigations for casdere the loading history is explicitly time dagent.

We remark here that we are concerned with a nalidgnamical system, with small perturbations, &her
the ensuing formulation contains dynamically slowbrying parameters .The first study of a striatignlinear
oscillators with slowly varying parameters wasiatgd by Kuzmak [4] , whose formulations wereegsislly
restricted to systems yielding second order difféa¢ equations. Later, Luke [5], in his study monlinear nearly
periodic waves, extended Kuzmak’s study to inclinigher orders of differential equations. Since thible
beginning, the concept of slowly varying parametensonlinear dynamical systems has been steaddysaverally
studied by other investigators including Bourlantl eHaberman [6], Kevorkian [7] and Li and Kevorki§]
among others.

20 Formulation
The dimensional differential equation satisfiedtbg lateral displacement W(X,Y,T) of a finite sirpydupported

imperfect column resting on a nonlinear (cubidastc foundation [9], trapped by (for now) amitrary time
dependent load P(T) , where is X and T are théapand time dependent variables respectivedygiven by
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where El is the bending stiffness while E is tteuNg’s modulus and | is the moment of inertia. i&iry, W is a
twice differentiable stress-free function of spaeeiable which serves as the initial imperfectiolam,, is the

mass per unit length of the column while and k, are constants and are such that>0, k,> aQis the

imperfection-sensitivity parameter and is such that for alinear elastic foundation that behaves like a “softening”
spring,a takes the values=1 where as for a nonlinear elastic foundation that behawes lthardening” springy
takes the valua=1. In this study, the nonlinear elastic foundation is deeimd&ehave like a “softening” spring and
so, we shall henceforth set=1. The column however rests on a nonlinear elastic foundatanproduces a
restoring force per unit length ofl - aK;W?. Here, a subscript following a comma indicates partial difféation
and we have neglected all nonlinear geometric effects as well asnexia and shall assume homogeneous initial
conditions. We now introduce the following quantities

() e fwow (K w0 PO (] @2

: ! 2(Elk, ) m,
On substitution these quantities into (2.1) and siiyiph, we get
- A diwv ~
Wn*"\.’xxxx’f%(mzt)VV'xfoW‘VV%:‘Z/‘Df(D?t)ylt >0 (2.3a)
w=w, =0at x=0,7t=0 (2.3b)
vv(x,O) =W, (x,O) =0,0<x<rm (2.3¢c)

HereO is a small parameter satisfying the conditioril8<1 and representing the amplitude of the imperfection.
Similarly A is a nondimensional load amplitude satisfying the caifi <A < 1, while f = f(D2 T) is a slowly

varying continuous load function of time and satisfies the conditions
t0)=1|f[Ff)<1 >0 (2.4)
and has right hand derivatives of all orders a0 .

We have carried out the non-dimensionalizationuichsa way that the classical buckling loadakes the
valueA=1. In our guest for solution, we are to determenparticular value ok, namelyAp, called the dynamic
buckling load satisfying the inequality Bs<As<A. where s is the associated static buckling load. The dysami
bucklingAp is defined as the largest load parameter for wthiehsolution of the problem remains bounded for al
time t >0. For solution, we are first to determine, usingltiple scaling regular perturbations in asymptotic
approximations, a uniformly valid asymptotic exgies of the lateral displacemenw(x,f). We shall next

determine the maximum value M/(x,f) and lastly determine the dynamic buckling logd using a suitable

maximization.
Analysis reported here, is similar to those in Wand Tian [10-12], Popov [13], Zhu et al [14] arch&nk
and Schueller [15].

3.0 Solution of the problem

Based on (2.3b) we assume
W=a,sinmx, m=123..., [a /<1 0Om 3.1

We setr =[F t , and for each min (3.1), we let % =" o= (m“ - 2m*Af (r)+1) (3.2
We further Ietvv(X, f) =U (X,t, Z'), so that w,; = QU SOUT (3.3a)

2 2 ’
w_=QU, +20FU. +0'U, |2 MADT ), (3.3b)
7 tt tr T Q}é t
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We now let U(X,t,T,D)=ZU (X,t,T)Di (3.4)

i=1

On substituting (3.1), (3.3a,b) and (3.4) into &2c3 and equating the coefficients of power§lpfve get

= 2
Mu*=u,?+ é( 9 12U D4y M:%f(r)sinmx (3.5)
MU2=0 (3.6)
MU © = Loy 207 ,f”+—(mz/hc )U . (3.7)
Q ! 0%
The initial conditions are evaluated at)t: (O, 0) and are given by
u=0 i=123.., (3.8a)
U=y =0 (3.8b)
uU+Q” (U, 9=0 =345 (3.8¢)
We shall next let (xt r) ZU (t,r)sinnx (3.9
On substituting (3.9) into (3.5) we observe thdtemn = m, we have
2a m*f(r)
ul +ul =8, 1B(r)= 3.10a
mee YU (r) o) ( )
u®(00)=u(00)=0 (3.10b)
The solution of (3.10a,b) is
UY(t,7)=a,(r)cost +h(r)sint +B (3.11a)
2a Am’ _ 23 AnY
0)=-B,; B,=B{0 , 3.11b
20 )= Q) (m'-2ma+1) (3-115)
B,(m* +1)f' (0)
0)=—"—7—"~%—=, h(0)=0 3.11c
0)=="p) b(0) (311¢)
Since (3.6) is homogeneous with homogeneous imitiatlitions, we expect
u@(t,r)=0 (3.12)

We substitute (3.9) into (3.7) for=3 and get

MU © = (8sin mx - sin 3mx)[ro +1,C0S 2t +r,COS3t + 1, cost]
40 (3.13a)

2

+29%(al sint-b' cost)sin mx + %(— a,sint+b, cost)
Q 2

WhereM =() and where
dr

=80+ 2B L (0)= 28] ry(0)= 28U OR: f(:’)R Ry=3mt+1)rmea (3130)

M= 3a£B .r.(0) :ng . r'(0) :% R, = (m“ +1)+ m’A (3.13¢c)

= (o) =B (o) = BBAC(0) _3al o ey ()= 15BE (3.130
4 4 8Q, 4 4

r(0)= %()4 R, = 9m°A +24(m* +1) (3.13e)

Q,=0(0)= (mi - 2m?A +1) (3.13)

For n=min (3.13a), we get
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Ul +ul = %[r0 +1,COS2t +1,C083t +, cost] + 2Q 2(a sint — b cost)
. (3.14a)
L (-a,sint +h cog)
o
u®(00)=0,u® (00)+Q*(0u" (00)=0 (3.14b)
However forn =3min (3.13a), we get
U3mn eul = —%[r0 +1,C0S2t +r1,Cc0S3t +71, cost] (3.14¢)
u(00)=0; U (00)=0 (3.14d)
2 _ 2
_ 81rr: 18r2n Af +1 (3.14¢)
m* —2m°Af +1

To ensure a uniformly valid solution in the timaled, we equate to zero in (3.14a) the coefficientsast and sint
m*Af'b, _ 3r . miAf'a

and get respectivel b - t=—2 a4 - =0 3.15
g p y A >0 80 % a, >0 ( )
. ¥ -% _ Q(O)
The solutions of (3.15) are b(r)= Q (s 7(s)ds ; a(r)=a(0 o) (3 16)
The remaining equation in (3.14a,b) is now soh@det
UB(t,7) = a,(r)cost +b,(r)sint 3 - cos2t _I, CosX (3.17a)
4Q 3 8
1958¢
0)=—-——2,b,(0)=0 3.17b
0)=-155q >0 (317b)
To solve (3.14c), we note that
e:w2+re'(o)+L(o)+...; wzz[wJ>0Dm (3.18a)
2 m*-2m?+1
2G)”(O) , - . , , L I
The terms7 ©'(0) + —— 5 - will definitely contribute to accuracy outside thatained in this investigation.
Thus, within the degree of accuracy retained heedet O 0w (3.18b)
On substituting (3.18b) into (3.14c¢) and solving, get
UO(t,7)=a,(r)coswt +b,(r)sinwt —%{% I';;O_Sit + r;)(io_sgt + rswgo_sﬂ (3.19a)
where
Q ) _| .5 15 3 1 - (3.19b)
0)= B0 Qo == - + - ,b,(0)=0
2.(0)= + Qo Laz 2w?-1) w?-4 2(0)2—9)} :(0)
Thus we have U(xt,7)=0U @ sinmx+ I [U 2 sinmx+U & sinamx] + 0(*) (3.20)

We shall now determine the maximum lateral dispieeet U, =U(xa,ta,r ) Where X,,t, and 7, are the values

of the associated variables at maximum displacem@ata function of space and time variables, thaddions for
maximum displacement are

U,=U +PQ%(,)u, =0 (3.21)
7
By substituting (3.20) into the first of (3.21), et X, = E (3.22)
where we have taken the least positive valu.pin (3.22). We now let
ta :t0+[|2 t]_ +..; —t; = E)"'EIZ ﬁ+,ra DZ i:; :DZ (f(;_'_[lz ﬁ+ ) (323a)
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By substituting (3.20) into the second of (3.21Y aquating the coefficient afl, we get
sint, =0 (3.23b)

This gives to=71 (3.23¢)
where we have taken the least nontrivial positiglie of t, in (3.23c).To determine the maximum displacement
U, :U(xa,ta,ra), we evaluate (3.20) at the critical values of Waeiables , using (3.22) and (3.23c) and obtain

U, =0(BO -3 0 )+CF[U2¢, 0 -U2 ¢, 0 +(B©) -4 0 Jt| +of) (3.24)

To determineﬂ , as it appears in (3.24), we note, from (3.2)uated at the critical values of the variablest tha
can easily get

t, = [2(m - 2mtaf (s)+1)%ds:9?{f; -%{DZ e o)+ 20O f;(o)ff +H+ (3.25a)
On substituting into (3.25a) fdr, and Ta from (3.25a), we get t,=7m= Qo%ﬂ (3.25h)
This gives T 7 (3.25¢)
0 Q UJ.A
On substituting into (3.24c), using all the alreadgluated terms, we have
U,=O0C+[FC,+- (3.26a)
3
C =2B, ,C, =%; (3.26b)
Q,
0= 1_[1—coswt0] 5 ., 1 5 38|, rrf’(O){mz/l +2(m“ +1)} (3.26¢)
24 )|2w-) 2wr-9) & -4 6B°Q
We shall now determine the dynamic buckling Iodq), which, according to Ette [16] follows from the
maximization a1 _, (3.27)
du
As in [16], the usual procedure is to first revettse series (3.26a) and so obtain
O=dU, +dU>+-- (3.28a)
By substituting into (3.28a) fdd , from (3.26a) and equating the coefficients of eipumanf powers of ], we get
d, =+ 4 =-S5 (3.28b)
Cl (:14
The maximization (3.27) now easily follows fromZ8a) to yield, after some simplification
=2 |5 (3.29)
3\3c,

which is evaluated ad = A, .On substituting into (3.29) fo€, and C,from (3.26b) and simplifying, we get

(mt* — 2P, +1)%
(3.30)

_903,|m?A, 1_(1—com)toJ 15 ., 1 5 _ 3 |, #t'@fa+2m'+1)}
V2 24 )|2af-) Aaf-9) o of-4 68202

where (3.30), is evaluated &t= A .
4.0 Analysis of result and conclusion

The result (3.30) is implicit in the load parameﬂzg and it is valid provided
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<1 We observe that (3.30) is

Kl—coswtoj{z(ls L1 5_ 3 }+ﬂf’(0){m2/‘+2(m4+1)}1

24 w-) 2w -9) & w-4 6870

independent of any form of the load functidrﬂjZ t~) provided that equation (2.4) is satisfied. Howevtke, result

depends strongly orf '(0) which is the first derivative of (DZ t~) evaluated at the initial time .The dominant result
is for the case where m=1 and this gives the faligwesult derivable from (3.30)

(1_/] D)%

_9aq 1_[1—cogut0] 15 1 5 3 | J2nt'Oft-4,)4,+4)
4 24 )| dot-) daf-9) F oF-4 2423 )
Where (4.1) is evaluated = 1.For step loading situation we readily obsehat tf '(0) = 0 so that

(4.1)

NI

(3.27) and (4.1) become respectively

1

= 2 >
(m“ +2mA, +1)§ = 90a,[m*4, {1—(1_0056‘)%){2(15 P —%— 3 Hz (4.2a)

V2 24 @ -) 2(w-9) W -4
(1—AD)§:9‘D§1MD 1_(1—cosa)t0j 15 1 5 __3 : (4.2b)
4 24 2(w?-) 2(*-9) @ w'-4

where (4.2b) is evaluated at m=1 aad is the value ofa,, at m=1. In all the results so far obtained (tfsat i

,equations (3.27) - (4.2b)), there is a tacit aggion that the buckling mode be partly in the mhaf the
imperfection and partly in some higher eigen mooethe imperfection. If we are however demandiog fthe
result of the case in which the buckling mode ity in the shape of the imperfection , then westnneglect the

term Uéﬁj(t,r). This is equivalent to neglecting the tefg, in the results as in (3.26b). This boils downakirg
Q, =1(30c) and the corresponding result for (4.26b) is

L-1,)z :% (4.3)
The result (4.3) is exactly the same as that obthby Amazigo and Frank [9] for step loading coasation.
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