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Abstract 
 

The main substance of this investigation is the determination of the 
dynamic buckling load of an imperfect quadratic-cubic elastic  model structure , 
which ,in itself, is a Mathematical generalization of some of the many physical 
structures normally encountered in engineering practice and allied fields. The load 
function in which the time variable is explicitly expressed, varies very slowly over a 
natural period of oscillation of the structure. The nonlinearity is quadratic-cubic in 
nature and multiple-scaling two-timing regular perturbation technique is utilized. 
The result shows that the dynamic buckling load depends on the first derivative of 
the load function evaluated at the initial time .Besides , it is established that it is 
possible to relate the dynamic buckling load to its static equivalent and this by-
passes the  labour of repeating the entire arduous  process for different imperfection 
parameters . 

 
 
1.0 Introduction 
 

The degree of dynamic stability of any elastic structure stressed by any dynamic load is an important 
stability criterion that determines the suitability or otherwise of any such structure for practical purposes. Over the 
years, many and diverse time dependent loading histories into which  these  structures  have been subjected , have 
been prescribed and actually used to analyse the state of dynamic stability of these structures . A cautious 
observation of these loading histories  indicates that  they  fall into two main categories, namely, those  in which the 
time variable  is implicitly expressed and those in which the time variable is  explicitly expressed . Loading histories 
of the first category include step loading, impulsive loading and rectangular loading among others. Examples of the 
second category include periodic and triangular loadings .Others in this category  include specific  examples such as 
the ones considered by Svalbonas and  Kalnins [1] and Aksogan  and Sofiyev [2] among others .The novelty in the 
first category  is the relative abject simplicity of the resultant  autonomous system. This , infact necessitated an easy 
determination by  Budiansky  and  Hutchinson [3,4] ,of the dynamic buckling loads of some simple  elastic 
structures , using  phase plane analysis .On the contrary, the second category of loading history always leads to non-
autonomous system, the solutions  which are always relatively more involving .Our  problem at  hand is an example 
of the second category . Here, the time variable is explicitly expressed and the loading history is dynamically slowly 
varying over a natural period of oscillation of the imperfect elastic structure. 

 
2.0 Formulation 
A simple structural device that amply captures the essence of our objective, is a two-arm simply-supported 
quadratic-cubic imperfect column stressed by, for now, a time dependent load F(T), applied just after the initial time 
T=0 .The column is assumed rigid and weightless and carries a mass M at the central  hinge (see figure) .Each of the 
two arms of the column is of length L . The motion of M is restrained by the action of a quadratic-cubic spring (ie 
having a quadratic-cubic nonlinearity) that provides a restoring force of ( )32 XXXKL βα −−  where α  and β  are 

constants and are such that  
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α > 0,  β  > 0 and K is the spring constant  considered positive .Here X is the central hinge displacement from the 

equilibrium position. Assuming small angular displacements characterized by φφφ ≅≅ sin ,  1cos ,the relevant  

equations of dynamic equilibrium are easily seen  to be  

( ) ( )
0T , 

2
X XKL-X 

)(2
1 32

22

2

>=+






 −+
L

TFX

KL

TF
KL

dT

Xd
M βα  (2.1a) 

( ) ( )
0

0
0 ==

dT

dX
X     (2.1b) 

where X is the initial displacement  which  shall serve as  initial imperfection . In the above formulation, we have 
neglected all nonlinear geometric terms of the same order as X3 (and higher) compared to that of the spring 

characteristics. We now assume the following nondimensional terms: == t~  , 
L

Xξ    ,  
M

KL
T  

( ) ( ) ( )
( ) L

X
  , 
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02F
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∈===
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KL
δλ .  Thus, the nondimensional forms of (2.1a,b) are  

  ( )( ) ( )  0t~ , t~    a- t~ 1
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>∈=−−+ δλξξξδλξ
fbf

d
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 0~
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0 ==

td
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Here, we have  a = λβα   and  0b  0,a  ,L b , 2 >>=L   is a nondimensional  load parameter  satisfying the 

inequality 10 << λ  while ∈   and   δ  are two  small parameters satisfying  the inequalities 

. 1      and  10 <<∈<<< δ At  the same time, the term ( )t~ δf  is a slowly varying continuous load  function  

of time  t~ , having right hand derivatives of all orders  at t~ =0  and satisfying the conditions     

( ) ( ) 0~1~00 >≤= t  for   tδ f  , f   (2.3) 

The function ( )tδ f ~  varies very slowly over a natural period of vibration of the structure. Except for condition 

(2.3), ( )tδ f ~  is strictly arbitrary .The formulation enunciated here was formally begun in [5]. In [5], the small 

parameters ∈   and   δ  were assumed to be mathematically unrelated. Thus, under such an assumption, (2.2a) is a 
two-small-parameter strongly nonlinear differential equation with explicitly expressed time dependent and 
dynamically slowly varying coefficients. The objective in [5] (and, indeed, in the present investigation) was the 

determination of a particular value of λ  namely D λ , called the dynamic buckling load , in which the imperfect 

elastic structure buckles  dynamically . We however remark that there are several physical structures of utmost 
engineering and structural importance in which (2.2a) is a generalization. These include (a) imperfect  columns ( 
finite and infinite)  on  elastic  nonlinear  quadratic-cubic  foundations, (b) imperfect cylindrical shells and (c)  
imperfect toroidal shells , among others . The last two examples hold if the buckling mode is assumed not only in 
the shape of the imperfection but also in some higher multiples of the imperfection. 
 The present investigation is the first of a three-part study of the same dynamical system represented by 
(2.2a,b) under various  restrictions  on the  parameters . Where as in [5], ∈   and   δ  were deemed mathematically 
non-related, in the present (and two subsequent investigations that will immediately follow), this Mathematical 
unrelatedness is relaxed. Various Mathematical relationships between   ∈   and   δ  will be assumed and the resultant 
dynamic buckling loads in each relationship will be determined. The dynamic buckling  load depends partly on (i) 
the unrelatedness of ∈   and   δ  (if indeed they are unrelated ) and partly on  ,(ii) the functional  relationship 
between the two parameters when they are related .The Mathematical sophistication in each case is slightly different 
.In this investigation ,we shall assume  the linear relationship 
     =∈δ      (2.4) 
The introduction of (2.4) into (2.2a,b) yields 
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    0
t
~

d

) 0 (d
(0) == ξξ     (2.5b) 

Unlike (2.2a,b), (2.5a,b) give a one-parameter  nonlinear  oscillatory  system  with  explicitly  time dependent  
slowly varying  coefficients . We shall assume 

    ( )        0t
~

for       1  )t
~

f(  ,  10 >≤∈=f   (2.6) 

 

3.0  Static buckling load  s λ   

 To analyse this case, we ignore the inertia term in (5a) and set 1)~( ≡∈ tf . Thus , we get  

    ( ) ∈=−− λξξξλ 32   a-  1 b    (3.1) 

As in [3,4] the static buckling load s λ is obtained from the maximization . 0=
ξ
λ

d

d This gives 

    ( ) 032 1 2 

s s s =−−− ξξλ ba     (3.2) 

where s ξ is the value of ξ  at buckling. Thus we get 
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We shall however take the negative sign of the two signs from square root .The positive sign has no physical  
relevance in this circumstance .On evaluating (3.1) at buckling we obtain 
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To arrive at (3.4), we have substituted for 2
sξ  from (3.3) into (3.1) in two quick successions and lastly, substituted 

for sξ  from the second of (3.1). The result (3.4) is implicit in the load parameter s λ  .When 0∈=  in (3.1), we 

have an eigen value problem with  solutions 0=ξ  for all λ  and ξλ a-1=  .b- 2ξ   The case 1=λ  Is called 

the classical buckling load and is usually represented by c λ . Thus we have c λ =1  

 
4.0 Step loading case. 
 

The dynamic buckling load D λ for the step loading case   is obtained by setting 1)t
~
 ( =∈f  in (5a) and 

getting the following by so doing 

    ( ) ∈=−−−+ λξξξλξ 32
2

2

1
t~ 

 
ba

d

d   (4.1a) 

    0
t~ 

)0(
)0( ==

d

d ξξ     (4.1b) 

The system (4.1a) is an autonomous case and a direct integration gives 

   ∈=−−






 −+






 λξξξξλξ
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1

t~ 2

1 43
2

2 
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d

d
  (4.2) 

A schematic appraisal of (4.2) shows that at the origin and its immediate neighbourhood , the trajectories are 
elliptical, resulting in bounded solutions. The elliptical trajectories increase in size from the origin with increased 
load λ  and timet~ .  At time Dt

~ and load D λ ( the dynamic buckling load), the largest elliptical trajectory with 

periodic and hence  bounded solution occurs  subsequent upon which every other trajectory is hyperbolic  with 
monotonically increasing and hence unbounded solutions . 
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We define  D λ  as the largest  load parameter for which bounded solutions occur . At maximum displacement m ξ , 

we get 

    ∈=−−− λξξξλ
4

  

3

  

2

 )1( 3
m

2
m bam    (4.3a) 

Simplifying (4.3a) further, we get  

     ( )m

32
m 
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346

ξ
ξξξλ

+∈
−−= mm ba

   (4.3b) 

As in [1, 2], the condition for dynamic buckling is  

      0
m

=
ξ
λ

d

d    (4.4) 

On performing (4.4) ,using (4.3a)or (4.3b),we get 
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where mDξ  is the value of mξ  at buckling  ,that  is, ( ). DmmD λξξ =    The solution of (4.5) is 
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If we evaluate (4.3a) at buckling by substituting, first, for 2
D mξ  from the first of (4.6) in two quick successions and 

lastly for mDξ from the second of (4.6), we get 
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As in (3.4), we observe that (4.7) is implicit in the load parameter D λ  . We can eliminate the small parameter ∈  in 

(4.7) using (3.4) to get 
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Thus we can determine the dynamic buckling load D λ  of the structure from a knowledge of the static 

buckling load s λ .This by-passes the labour of repeating the entire process for different imperfection amplitudes ∈ . 

 
5.0 Slowly varying load 
 

For clarity of further analysis, we recast (2.5a,b) as 

( ) 0t
~
 , )~()~(1

t
~

3 2

2 

2 

>∈∈=−−∈−+ tfbatf
d

d λξξξλξ
   (5.1) 

( ) 0~
)0(

0 ==
td

dξξ      (5.2) 
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The problem (5.1, 5.2), wearing a semblance of seemingly relative simplicity compared to (2.2ab), is here solved 
using multiple scaling-two–timing regular perturbation technique .Similar works were done by Wang and Tian [6-8] 
. We now let 

    ( ) 2

1~1~
~  

)tλf(
td

dt
,  tτ ∈−==∈   (5.3) 

Based on (5.3), the displacement ( )t~ξ  can now be thought of as a function of the fast time t and slow time τ  .Thus 

we have  
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where ( ) ( ) ( ) ( )τ  t

   and   and   
dt

d
 =′

 indicate partial differentiation with respect to  t and τ  respectively. We now 

let 
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and substitute (5.4a,b) into (5.1, 5.2), using (5.5), and after ,equate the coefficients of integral powers of ∈  and get  
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The initial conditions which are evaluated at ( ) ( )0,0, =τt  are given by 
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The solution of (5.6) subject to (5.9a) for i =1, is 
( )( ) ( ) ( ) Bttt ++= sincos, 11
1 τβτατζ   (5.10a) 
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We shall however use 0)0( BB =  .Thus we have  

     ( ) 01 0 B−=α      (5.10c) 

We now substitute for ( )1 ζ  from (5.10a) into (5.7) and, to ensure a uniformly valid solution in the time scale t, 

equate to zero the resultant coefficients of cost and sint and obtain the following respective equations 
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By multiplying the first of (5.11a) by 1 β  and the first (5.11b) by 1 α , adding and solving the resultant 

equation in the dependent variable  ( ) ( )2 
1 

2 
1 βα +  , we get 
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where we have used (5.10b) . However, the full solution of (5.11a,b) (see appendix) yields 
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The remaining equations in the substitution into (5.7) are  
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The solution of (5.14a,b), using (5.15a-c) is 
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In the next round of analysis, we shall need the following simplifications 
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Similarly, we shall need  
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Meanwhile, we also have  
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From (5.11b) or (5.13a), we get 
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We also get 
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From (5.21a), we get 
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We next substitute for terms on the right side of (5.8) and, to ensure a uniformly valid solution in terms of t, equate 
to zero the coefficients of cost and sint in the resultant equation and so obtain respectively 
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where 
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If we multiply the first of (5.20a) by 2 β  and the second by 2α  and add followed by simplification, we obtain 

  ( ) ( )
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On solving (5.21a), subject to (5.16bb), we get 
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We shall not embark on a full determination of 2 α  and 2 β  as every detailed information about them can easily be 

obtained from either (5.20a) or (5.21b) .The remaining equation in the substitution into (5.8) are 
( ) tStStStSSL 3sin3cos2sin2cos 22 21 20 19 18
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The solution of (5.22, 5.23) is  
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Meanwhile, from (5.29a) or (5.21b), we have 
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As a summary so far, we write 
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 ( ) ( )( ) ( )( ) ( )( ) ( )433221 ,,,, ∈+∈+∈+=∈ Otttt τζτζτζτξ     (5.26) 

 
6.0 Maximum Displacement 
 

The condition for maximum displacement is 

    ( ) 01  2
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We shall let aa  and  t

~
 ,  τat  be the critical values of t, τ  and  ~t  respectively at maximum displacement, and now 

assume the following series 
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We shall now determine some of the terms in (6.26a,b) .We simplify (6.1), using (6.2a,b) and thereafter, equate to 

zero the coefficients of 2   and  ∈∈  and get respectively 
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From (6.3a), we have,    π=0t      (6.4a) 

where we have retained only the least nontrivial positive value of 0t . 

From (6.3b), we get 
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where 0
~t  is yet to be determined. From the second of (5.3) evaluated at the critical values, we have  
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If we substitute for at
~  and  at into (6.5) from (6.2a, b) and equate the coefficients of O(1) and ∈  , we get 
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The maximum displacement mξ  is now determined by evaluating (5.27) at the critical values( )aat τ, , using 

(6.2a,b) and (6.6) . Thus we have  
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On simplifying, we get 
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On simplifying (6.7), we get,  L+∈+∈+=∈ 3
3

2
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1 CCCmξ   (6.9a) 
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All along, we have used the assumption that an arbitrary function ),( aat τµ  has the following expansion (using 

(6.2a,b)): 
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where (6.10) is evaluated at ( ) ( )0,, 0tt aa =τ  .     

 

7.0 Dynamic buckling load  Dλ  
 

We remark that the analysis is predicated on the use of (4.4) which we now utilize. As 
noted in [9], the first thing to do is to reverse the series (6.9a) in the form  

  L+++∈= 3
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2
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By substituting into (7.1a) for mξ from (7.1a) and equating the coefficients of powers of∈ , we get 
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The maximization (4.4) is now accomplished through (7.1a), bearing in mind that each L1,2,3,i , =if , is a 

function of the load parameter λ .This gives  
     2
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The solution of (7.1c) is    ( )
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We now simplify the terms in (7.1b,d) and note that  
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Similarly, we have  
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Thus, from (7.1d), we get 
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where we have taken only the negative sign in (7.1d), the positive sign having no physical relevance in this instance 

.Thus , the maximum displacement mDξ  at buckling is obtained from (7.1d) as  
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To determine the dynamic buckling load Dλ , we multiply (7.1a) by 3 and get 
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To simplify further, we make the term 3
33 mDf ξ  the subject in (7.1c) and substitute same into (7.5) and simplify to get  

 ( ) 







−=+∈=

2

1

2

1

21 2
1

2
23

C

C

C
ff mDmD

mDmD

ξξξξ    (7.6) 

where (7.6) is evaluated at λ = Dλ .   On further simplifying (7.6), we get 
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8.0 Analysis of result and conclusion 
 

The result (7.7), which is asymptotic in nature, is implicit in the load parameter Dλ . It is valid provided 

 1,1,1 321 <<< QQQ and ,1  4 <Q  among others. It is observed that the dynamic buckling load Dλ  is independent 

of any specific form of the slowly varying load function )~( tf ∈  provided condition (2.6) is satisfied. However  Dλ  

depends, as far as the load function )~( tf ∈ is concerned, on )0(f ′  which is the derivative of )~( tf ∈  evaluated at 

the initial time.  Using (3.4), we can easily eliminate the imperfection amplitude ∈  in (7.7) to get 
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The implication of (8.1) is that we can determine the dynamic buckling load Dλ  in the case of a slowly varying load, 

from a knowledge of the static buckling load s λ . This by-passes the labour of repeating the arduous process for 

different imperfection amplitudes   
 

Appendix 
 

We now demonstrate the solution of (5.11a,b) 
For brevity, we recast the equations thus 
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The initial conditions are 
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On substituting A3 into A1 and simplifying, we get 
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On substituting from A3, we get 
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On substituting into A3 for ( )τϕ , we get 
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On using the initial conditions for ( )τα1  from A2, we get  
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Similarly, on using the initial conditions for ( )τβ1  from A2, we obtain 
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On substituting for the evaluated coefficients in A7 from A9 and in A8 from A10, we obtain the results in (5.13a,b). 
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