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Abstract 

 
We generate some results for some particular subclasses of starlike and 

close-to-convex functions using Briot-Bouquet differential subordination method. 
 
 
1.0 Introduction 

Let A denote the class of function f(z) of the form ( ) ∑
∞

=
+=

2k

k

k zazzf , which are analytic and univalent in 

the unit disk U = {z:|z|<1}, normalized by the conditions f (0) = 0,  f′ (0) = 1, With S*(α) and CC(α) denoting the 
subclasses of A that are, respectively starlike and close-to-anvere of order α, α∈ [-1, 1), see [5].  Also, for two 
functions f (z) and g (z) analytic in U, we say that the function f (z) is subordinate to g (z) in U, and write, f (z) p  
g(z) or f p  g, z ∈ U, if there exists a Schwarz function w(z), analytic in U with w(0) = 0 and |w(z)| < 1, z ∈ U, such 

that, ( ) ( )( )zwgzf = , z ∈ U. 

In particular, if the function g(z) is univalent in U, the above subordination is equivalent to f (0) = g(0) and f 
(U) ⊂ g(U). 

The general theory of differential subordination was introduced in 1981 by Millerr and Mocanu (see 2). 
The first – order differential subordination  
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h is convex and  ( )zp  regular in U known as the Briot – Bouquet differential subordination was introduced by the 

same author as a special case of the general theory of differential subordination [ see 2]. Some of its properties were 
studied by the same author in [3, 4]. 

This first order differential subordination with many interesting applications in the theory of univalent 
functions was considered by many authors see (3, 4 and 5).  

The main purpose of this work is to apply a method based on the Briot-Bouquet differential subordination 
to derive some subordination results involving some particular classes of starlike and close-to-convex functions for 
special values of ., handγβ  

 

2.0 Preliminary results: 
 

In order to prove our main results, we shall need the following definitions and lemmas. 
Definition 2.1 

For a function f(z)∈A, let Dn be the salagean differential operator defined in [1] as  D0 f(z) =f(z) D1 f(z) = 
D f(z) z f1(z), Dn f(z) = D[Dn-1 f(z) ]= z[Dn-1 f(z)]1, z∈U, n ≥ 1. 

With the above definition, we introduce some classes of A denoted by ( )r,S*
n α  and CCn(α,r) as follows: 

Definition 2.2 

Let f ∈ A, we say that the function f (z)∈ ( )r,S*
n α , if and only if  
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where α ≥ 0, r∈[-1.1), α + r ≥ 0, n ∈N. 
Definition 2.3 

Let f (z)∈A, we say that the function f (z)∈CCn(α, r) in respect to the function g(z)∈ *
nS (α, r) where α ≥ 0, 

r∈[-1,1), (α+r) ≥ 0 if and only if ( )
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p , z ∈ U,  where α ≥ 0, r∈[-1.1), α+r ≥ 0, n∈N. 

Lemma 2.1.[3,4] 
Let h(z) be convex in U and Re [βh(z) + r) > 0, z∈U. If P(z) is analytic in U with P(0)=h(0) and P(z) 

satisfied the Briot-Bouquet differential subordination ( ) ( )
( ) ( )zh

rzp

zpz
zp p

+
′
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, then ( )zp  p  ( )zh . 

Lemma 2.2 [2,4] 
Let q(z) be convex in U and j(z) be analytic in U with Re[j(z)]>0. If p(z) is analytic in U and p(z) satisfied 

the differential subordination ( ) ( ) ( ) ( )zqzpzzjzp p′+ . ,  then  ( ) ( )zqzp p  

 
3.0 Main Results 
 

Theorem 3.1 

 If F(z)∈ ( )r,S*
n α  with α≥0, r∈[-1,1), then the integral operator f(z) defined by 
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     (3.1) 

z∈U, c,y∈N, is also in ( )rSn ,* α . 

Proof: 

Let F(z)∈ ( )rSn ,* α , then by definition ( )
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differentiating (3.1) we obtain: ( ) ( ) ( ) ( )zfyczfzzcF ++′=    (3.2) 

By applying the linear operator Dn+1 we obtain: 
   ( ) ( ) ( ) ( )zfycDzfDzFCD nnn ++= +++ 121    (3.3) 

Similarly, application of the linear operator Dn yields: 
   ( ) ( ) ( ) ( )zfDyczfDzFCD nnn ++= +1    (3.4) 

Thus,  
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By setting     ( )
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So that p (z) has the following series expansion; p(z) = 1 + p1z + p2z
2 + p3z

3 + …, 

By differentiating (3.6), we have,  ( ) ( )
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 From (3.5), we obtain, 
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 Conclusion follow from Lemma (2.1) by considering h(z) to be convex in U with h(0) = 1, Re(c + y) ≥ 0 

and thus, Re(h(z) + (c  +  y))  >  0 and with Lemma (2.1), we obtain: ( ) ( )zhzp p .  Thus, ( ) ( )
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 ∈ ( )rSn ,* α , z∈U. 

Theorem 3.2 

If F(z)∈CCn(α,r), in respect to the function g(z)∈ ( )r,S*
n α  with α≥0, r∈[-1,1), then the integral operator 

f(z) defined by 

   ( ) ( )
∫

+

+
=

z yc

yc
dt

t

ttzF

z

c
zf

0

, z∈U, c,y∈N   (3.10a) 

is also in CCn(α,r) in respect to the function ( )r,S*
n α , 
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z∈U, c, y∈N≠0     (3.10b) 

Proof 

Let F(z)∈CCn(α,r), in respect to G(z)∈ ( )r,S*
n α  , then by definition 
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By differentiating (3.10) we obtain: ( ) ( ) ( ) ( )zfyczfzzcF ++′=  and ( ) ( ) ( ) ( )zgyczgzzG ++′=  

By the application of the linear operator Dn+1, we obtain, ( ) ( )zfDzFCD nn ′= ++ 21  ( ) 1+++ nDyc ( )zf .  

Similarly, the application of the linear operator Dn, we obtain, ( ) ( )+= + zgDzGCD nn 1  ( ) ( )zgDyc n+ . 

Thus, simple calculation, shows that, 
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By differentiating (3.12) logarithmically, we obtain, 
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Thus, from (3.11),  
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The conclusion follows form Lemma (2.2), by taking q(z) to be convex in U, then 
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2.0 Conclusion 
 

In this paper we are able to generate some subordination results for some particular subclasses of univalent 
functions (mainly, the starlike and close – to – convex functions) via a method based upon a special; case of 
differential subordination known as Briot – Bouquet differential subordination for special values of .and, hγβ   
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