On a differential subordination of some certain subclass of Univalent function

Y. O. Aderinto
Department of Mathematics, University of Ilorin, Ilorin, Nigeria

Abstract
 We generate some results for some particular subclasses of starlike and close-to-convex functions using Briot-Bouquet differential subordination method.

1.0 Introduction

Let A denote the class of function $\mathrm{f}(\mathrm{z})$ of the form $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$, which are analytic and univalent in the unit disk $\mathrm{U}=\{\mathrm{z}:|\mathrm{z}|<1\}$, normalized by the conditions $f(0)=0, f^{\prime}(0)=1$, With $\mathrm{S}^{*}(\alpha)$ and $C C(\alpha)$ denoting the subclasses of A that are, respectively starlike and close-to-anvere of order $\alpha, \alpha \in[-1,1)$, see [5]. Also, for two functions $f(\mathrm{z})$ and $g(\mathrm{z})$ analytic in U, we say that the function $f(\mathrm{z})$ is subordinate to $g(\mathrm{z})$ in U , and write, $f(\mathrm{z}) \prec$ $g(\mathrm{z})$ or $f \prec \mathrm{~g}, \mathrm{z} \in \mathrm{U}$, if there exists a Schwarz function $w(z)$, analytic in U with $w(0)=0$ and $|w(z)|<1, \mathrm{z} \in U$, such that, $f(z)=g(w(z)), \mathrm{z} \in \mathrm{U}$.

In particular, if the function $g(\mathrm{z})$ is univalent in U , the above subordination is equivalent to $f(0)=g(0)$ and f $(\mathrm{U}) \subset g(U)$.

The general theory of differential subordination was introduced in 1981 by Millerr and Mocanu (see 2). The first - order differential subordination

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z), \quad z \in U, \gamma \neq 0 \text {, Re } \gamma \geq 0 \text {, }
$$

h is convex and $p(z)$ regular in U known as the Briot - Bouquet differential subordination was introduced by the same author as a special case of the general theory of differential subordination [see 2]. Some of its properties were studied by the same author in $[3,4]$.

This first order differential subordination with many interesting applications in the theory of univalent functions was considered by many authors see (3, 4 and 5).

The main purpose of this work is to apply a method based on the Briot-Bouquet differential subordination to derive some subordination results involving some particular classes of starlike and close-to-convex functions for special values of β, γ and h.

2.0 Preliminary results:

In order to prove our main results, we shall need the following definitions and lemmas.

Definition 2.1

For a function $f(z) \in A$, let D^{n} be the salagean differential operator defined in [1] as $D^{0} f(z)=f(z) D^{l} f(z)=$ $D f(z) z f^{l}(z), D^{n} f(z)=D\left[D^{n-1} f(z)\right]=z\left[D^{n-1} f(z)\right]^{l}, z \in U, n \geq 1$.

With the above definition, we introduce some classes of A denoted by $S_{n}^{*}(\alpha, r)$ and $C_{n}(\alpha, r)$ as follows:

Definition 2.2

Let $f \in A$, we say that the function $f(z) \in \mathrm{S}_{\mathrm{n}}^{*}(\alpha, \mathrm{r})$, if and only if

$$
\operatorname{Re}\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right) \prec\left(\frac{1+\alpha z}{1+r z}\right), z \in U,
$$

where $\alpha \geq 0, r \in[-1.1), \alpha+\mathrm{r} \geq 0, n \in N$.

Definition 2.3

Let $\mathrm{f}(\mathrm{z}) \in \mathrm{A}$, we say that the function $\mathrm{f}(\mathrm{z}) \in \mathrm{CC}_{\mathrm{n}}(\alpha, \mathrm{r})$ in respect to the function $\mathrm{g}(\mathrm{z}) \in \mathrm{S}_{\mathrm{n}}^{*}(\alpha, \mathrm{r})$ where $\alpha \geq 0$, $\mathrm{r} \in[-1,1),(\alpha+\mathrm{r}) \geq 0$ if and only if $\operatorname{Re}\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right) \prec\left(\frac{1+\alpha z}{1+r z}\right), z \in U$, where $\alpha \geq 0, r \in[-1.1), \alpha+r \geq 0, n \in N$.
Lemma 2.1.[3,4]
Let $h(z)$ be convex in U and $\operatorname{Re}[\beta h(z)+r)>0, z \in U$. If $P(z)$ is analytic in U with $P(0)=h(0)$ and $P(z)$ satisfied the Briot-Bouquet differential subordination $p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+r} \prec h(z)$, then $p(z) \prec h(z)$.

Lemma 2.2 [2,4]

Let $q(z)$ be convex in U and $j(z)$ be analytic in U with $\operatorname{Re}[j(z)]>0$. If $p(z)$ is analytic in U and $p(z)$ satisfied the differential subordination $p(z)+j(z) . z p^{\prime}(z) \prec q(z)$, then $\mathrm{p}(\mathrm{z}) \prec \mathrm{q}(\mathrm{z})$

3.0 Main Results

Theorem 3.1

$$
\begin{align*}
& \text { If } F(z) \in \mathrm{S}_{\mathrm{n}}^{*}(\alpha, \mathrm{r}) \text { with } \alpha \geq 0, r \in[-1,1) \text {, then the integral operator } f(z) \text { defined by } \\
& f(z)=\frac{c}{z^{c+y}} \int_{0}^{z} \frac{z F(t) t^{c+y}}{t} d t \tag{3.1}
\end{align*}
$$

$z \in U, c, y \in N$, is also in $S_{n}^{*}(\alpha, r)$.
Proof:
Let $F(z) \in S_{n}^{*}(\alpha, r)$, then by definition $\operatorname{Re}\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right) \prec\left(\frac{1+\alpha z}{1+r z}\right), \mathrm{z} \in \mathrm{U}, \alpha \geq 0, r \in(-1,1)$. By
differentiating (3.1) we obtain: $\quad c F(z)=z f^{\prime}(z)+(c+y) f(z)$
By applying the linear operator D^{n+1} we obtain:

$$
C D^{n+1} F(z)=D^{n+2} f(z)+D^{n+1}(c+y) f(z)
$$

Similarly, application of the linear operator D^{n} yields:

$$
\begin{equation*}
C D^{n} F(z)=D^{n+1} f(z)+(c+y) D^{n} f(z) \tag{3.4}
\end{equation*}
$$

Thus, $\quad \frac{C D^{n+1} F(z)}{C D^{n} F(z)}=\frac{D^{n+2} f(z)+(c+y) D^{n+1} f(z)}{D^{n+1} f(z)+(c+y) D^{n} f(z)}$

$$
\begin{equation*}
=\frac{\frac{D^{n+2} f(z)}{D^{n+1} f(z)} \bullet \frac{D^{n+1} f(z)}{D^{n} f(z)}+\frac{(c+y) \cdot D^{n+1} f(z)}{D^{n} f(z)}}{\frac{D^{n+1} f(z)}{D^{n} f(z)}+(c+y)} \tag{3.5}
\end{equation*}
$$

By setting

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{D^{n} f(z)}=p(z) \tag{3.6}
\end{equation*}
$$

So that $p(z)$ has the following series expansion; $p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots$,
By differentiating (3.6), we have, $\quad z p^{\prime}(z)=z \cdot\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right)$

$$
\begin{array}{r}
=\frac{z\left[D^{n} f(z) \cdot\left(D^{n+1} f(z)\right)^{\prime}-D^{n+1} f(z)\left(D^{n} f(z)\right)^{\prime}\right]}{\left(D^{n} f(z)\right)^{2}} \\
=\frac{D^{n} f(z) D^{n+2} f(z)-\left(D^{n+1} f(z)\right)^{2}}{\left(D^{n} f(z)\right)^{2}} \tag{3.7}
\end{array}
$$

Also,

$$
\begin{align*}
& \frac{1}{p(z)} \cdot z p^{\prime}(z)=\frac{D^{n+2} f(z)}{D^{n+1} f(z)}-\frac{D^{n+1} f(z)}{D^{n} f(z)} \\
\therefore \quad & \frac{D^{n+2} f(z)}{D^{n+1} f(z)}=\frac{1}{p(z)} \cdot z p^{\prime}(z)+p(z) \tag{3.8}
\end{align*}
$$

From (3.5), we obtain,

$$
\begin{align*}
\frac{D^{n+1} F(z)}{D^{n} F(z)} & =\frac{\left(\frac{z p^{\prime}(z)}{p(z)}+p(z) \cdot p(z)+(c+y) \cdot p(z)\right.}{p(z)+(c+y)} \\
& =p(z)+\frac{z p^{\prime}(z)}{p(z)+(c+y)} \tag{3.9}
\end{align*}
$$

Conclusion follow from Lemma (2.1) by considering $\mathrm{h}(\mathrm{z})$ to be convex in U with $h(0)=1, \operatorname{Re}(\mathrm{c}+\mathrm{y}) \geq 0$ and thus, $\operatorname{Re}(h(z)+(c+y))>0$ and with Lemma (2.1), we obtain: $p(z) \prec h(z)$. Thus, $p(z)=\frac{D^{n+1} f(z)}{D^{n} f(z)} \prec h(z)$. By taking $h(z)=\frac{1+\alpha z}{1+r z}$. Hence, $f(z)=\frac{c}{z^{c+y}} \int_{0}^{z} \frac{z F(t) t^{c+y}}{t} d t \in S_{n}^{*}(\alpha, r), \mathrm{z} \in \mathrm{U}$.

Theorem 3.2

If $F(z) \in C C_{n}(\alpha, r)$, in respect to the function $g(z) \in \mathrm{S}_{\mathrm{n}}^{*}(\alpha, \mathrm{r})$ with $\alpha \geq 0, r \in[-1,1)$, then the integral operator $f(z)$ defined by

$$
\begin{equation*}
f(z)=\frac{c}{z^{c+y}} \int_{0}^{z} \frac{z F(t) t^{c+y}}{t} d t, z \in \mathrm{U}, c, y \in N \tag{3.10a}
\end{equation*}
$$

is also in $C C_{n}(\alpha, r)$ in respect to the function $\mathrm{S}_{\mathrm{n}}^{*}(\alpha, \mathrm{r})$,

$$
\begin{equation*}
g(z)=\frac{c}{z^{c+y}} \int_{0}^{z} \frac{z G(t) t^{c+y}}{t} d t \boldsymbol{z} \in U, c, y \in N \neq 0 \tag{3.10b}
\end{equation*}
$$

Proof
Let $F(z) \in C C_{n}(\alpha, r)$, in respect to $G(z) \in \mathrm{S}_{\mathrm{n}}^{*}(\alpha, \mathrm{r})$, then by definition

$$
\operatorname{Re}\left(\frac{D^{N+1} F(z)}{D^{n} G(z)}\right) \prec \frac{1+\alpha z}{1+r z}, z \in U, \alpha \geq 0, r \in[-1,1)
$$

By differentiating (3.10) we obtain: $c F(z)=z f^{\prime}(z)+(c+y) f(z)$ and $G(z)=z g^{\prime}(z)+(c+y) g(z)$
By the application of the linear operator $\mathrm{D}^{\mathrm{n}+1}$, we obtain, $C D^{n+1} F(z)=D^{n+2} f^{\prime}(z)+(c+y) D^{n+1} f(z)$.
Similarly, the application of the linear operator D^{n}, we obtain, $C D^{n} G(z)=D^{n+1} g(z)+(c+y) D^{n} g(z)$. Thus, simple calculation, shows that,

$$
\begin{equation*}
\frac{D^{n+1} F(z)}{D^{n} G(z)}=\frac{\frac{D^{n+2} f(z)}{D^{n+1} g(z)} \cdot \frac{D^{n+1} g(z)}{D^{n} g(z)}+\frac{(c+y) \cdot D^{n+1} f(z)}{D^{n} g(z)}}{\frac{D^{n+1} g(z)}{D^{n} g(z)}+(c+y)} \tag{3.11}
\end{equation*}
$$

By setting $\frac{D^{n+1} f(z)}{D^{n} g(z)}=p(z)$, and $\frac{D^{n+1} g(z)}{D^{n} g(z)}=k(z)$
By differentiating (3.12) logarithmically, we obtain,

$$
z p^{\prime}(z)=z \cdot\left(\frac{D^{n+1} f(z)}{D^{n} g(z)}\right)^{\prime}=\frac{D^{n+2} f(z) \cdot D^{n} g(z)-D^{n+1} f(z) \cdot D^{n+1} g(z)}{\left(D^{n} g(z)\right)^{2}}
$$

and $\frac{1}{k(z)} \cdot z p^{\prime}(z)=\frac{D^{n+2} f(z)}{D^{n+1} g(z)}-\frac{D^{n+1} f(z)}{D^{n} g(z)}$, which lead us to,

$$
\begin{equation*}
\frac{D^{n+2} f(z)}{D^{n+1} g(z)}=\frac{1}{k(z)} \cdot z p^{\prime}(z)+p(z) \tag{3.13}
\end{equation*}
$$

Thus, from (3.11),
$\frac{D^{n+1} F(z)}{D^{n} G(z)}=\frac{k(z) \cdot\left(\frac{1}{k(z)} \cdot z p^{\prime}(z)+p(z)\right)+(c+y) \cdot p(z)}{k(z)+(c+y)}=p(z)+\frac{z p^{\prime}(z)}{k(z)+(c+y)}$
The conclusion follows form Lemma (2.2), by taking $q(z)$ to be convex in U, then $\frac{D^{n+1} F(z)}{D^{n} G(z)}$ $=p(z)+\frac{z p^{\prime}(z)}{k(z)+(c+y)} \prec q(z)$, where from the condition of the theorem, we have $\operatorname{Rek}(z)>0$ and $\operatorname{Re}(c+y) \geq 0$, thus, $\operatorname{Re} \frac{1}{k(z)+(c+y)}>0$. With this condition and from Lemma (2.2) and taking $j(z)=\frac{1}{k(z)+(c+y)}$, we obtain, $p(z) \prec q(z)$. From here it follows that, if, $\operatorname{Re}\left(\frac{D^{n+1} F(z)}{D^{n} G(z)}\right) \prec \frac{1+\alpha z}{1+r z}$ then $p(z)=\frac{D^{n+1} f(z)}{D^{n} g(z)} \prec \frac{1+\alpha z}{1+r z}$. Taking $q(z)$ to be $\frac{1+\alpha z}{1+r z}$. Hence, $\mathrm{f}(z) \in C C_{n}(\alpha, r)$, in respect to $g(z) \in S_{n}^{*}(\alpha, r), \alpha \geq 0, r \in[1,1]$.

2.0 Conclusion

In this paper we are able to generate some subordination results for some particular subclasses of univalent functions (mainly, the starlike and close - to - convex functions) via a method based upon a special; case of differential subordination known as Briot - Bouquet differential subordination for special values of β, γ and h.

References

[1] Abdulhahm, S.: On a class of analytic function involving the Salagean differential operator, Tamkang J. math. 23,1 (1992), 51-58.
[2] Miller, S. S. and Mocanu, P. T.: Differential subordinations and univalent functions, Michigan Math. Journal, 28, (1981), 157-171.
[3] Miller, S. S. and Mocanu, P. T.: On some classes of first-order differential subordinations, Michigan Math. Journal, 32, (1985), 185-195.
[4] Miller, S. S. and Mocanu, P. T.: Univalent solution of Briot-Bouquet differential equations, Journal of Differential Equations, 56, (1985), 185-195.
[5] Ravichandran, V., Selvaraj, C. and Rajalaksmi, R.: On sufficient conditions for starlike functions of order α, Journal of Inequalities in Pure and Applied Math. 3, 5(81), (2002), 1-6.

