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Abstract

Let C be the finite union of closed convex sets in a complete metrisable
locally convex space. If f: C — C with f (C) compact, then f can be approximated
by a map g: C — C which has only a finite number of fixed points. This result,
which isa generalization of theresult of Baillon and Rallis, is proved in this paper.
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1.0 I ntroduction

In the last fifty years or so, the theory of fixpdints has been a very powerful and important iodhe
study of nonlinear phenomena. In particular, fiygunt techniques have been applied in such divbedds as
biology, Chemistry, Engineering and Physics. ltcttes on many areas of Mathematics including genepalogy,
algebraic topology, nonlinear functional analysis¢d ordinary and partial differential equations afsb serves as a
useful tool in applied Mathematics. More importginfixed point theory method is an essential toothie study of
existence and approximation of solutions of ordireand partial differential equations.

2.0 Preliminaries

Let C be a subset of a metric space (X, d). Wetlsatythe C satisfies Fix-Finite Approximation Pradye
(FFAP) if for any family2z of maps from C to C, and for everllfZ and alle > 0, there is a §1.% such that
d(f(x),g(x)) < ¢ for all xLIC and g has only a finite number of fixed pointd][1H. Hopf in [7] proved by a special
construction that a finite polyhedron which is ceated and which its dimension is greater than sfset FFAP.
H.Schirmer [13] extended this result to any cordiumi n-valued multifunction. J. B. Baillon and N. Rallis [1]
showed that any finite union of closed convex stshsé a Banach space satisfies the FFAP for anypeotrself
maps (i.e. continuous maps whose closure of itggémcompact). A Stouti in [14] also studied th&AP in normed
linear spaces. In this paper, we showed that Baéled Rallies result can be generalized to loaalyex spaces.

We recall the following definitions used in the pfof our Theorem.

Definition 2.1 [14]
Let X be a topological space and, (@ a metric spaceA homotopyh;: X—Y , 0<t <1, is said to be-
homotopy if supfl(h(x), h:(X)): t, t LJ[0, 1]}< &} for all x[IX.

Definition 2.2 [4]

Let Y be a metric space, thenis said to be an Absolute Neighbourhood RetradtiRA if for any
nonempty closed subsatof an arbitrary metric spacé and for any continuous mdpA—Y, there exists an open
subselJ of X containingA and a continuous map g=b¥ which is an extension dfi.e.g(x) = f(x) for all x L1X.

In [4], Dugundji established the homotopy extension ANRs. Finite union of closed convex set in a
metric space are examples of ANR’s [4, 5].
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Definition 2.3 [11]

A locally convex linear topological space is a éingopological space which has a base of convex
neighbourhoods of the origin. If the intersectidrttee neighbourhoods of the origin Z2r0,then we say that the
locally convex space is Haudsdorff. If the neightmed of the origin is countable addis Hausdorff, therX is
metrisable.

All normed linear spaces are locally convex spaEes.more information on the theory of locally cemrv
spaces, see [8-9], [11], and [12].

Definition 2.4 [5, P411]

Let A be any subset of a vector spateThe convex hulH(A) of A is the intersection of all convex sets
containingA.
The following result is well known.

Theorem2.1 (A. Tychonoff)
Let X be a locally convex linear topological space atdd be a compact convex subseXofThen each
continuoud: C — C has a fixed point.

Fixed Point Theory is not necessarily locally congpaces as discussed in [6].

Tychonoff fixed point Theorem is not immediatelypipable in analysis because the required compastoéthe
domain is difficult to get in practice. The followg which was proved by J. Schauder wieis a Banach space is
more practicable.

O O
We denote the intersection of all closed conves settaining B in a locally convex spacebBas B is
compact wheneveX is complete an® is compact [11, p60, Corollary]

Theorem2.2
Let C be a closed convex subset of a complete localhwew spaceX andf: C — C be continuous. If

f (C) is compact, then f has a fixed point.
Pr oof

_ O
Since f (C) is compact, we have that (C) is compact by [11, p60, Corollary]. Since C is eldsand

- — O ] O O O
convex and f(C) U C = C, it follows that f(C) Ll C= C. Thusf | f(C): f(C)— f(C) and thus by
Tychonoff's Theorem, f has a fixed point. SincBanach space is a complete locally convex spaee, we have
the following well known result due to J. Schauder.

Corollary 2.1 (Tychonoff-Schauder Theorem)

Let C be a closed convex subset of a Banach syarelf: C — C be continuous. Iff (C)is compact,
then f has a fixed point.

While the Tychonoff -Schaud@theorem is well known, Theorem B is a new resul/e shall now state
the following theorems which is fundamental to mesults in this paper.

Theorem2 3 [11, Chap. 1, Theorem 4].
The topology of a metrisable locally convex spaae always be defined by a metd¢x, y) = F(x-y),

which is invariant under translation, whd¥éx) = 22 min{ p,(x),1} and {p;} is the set of seminorms describing

the locally convex topology.
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It should be observed that Xfis a normed linear space, thErsatisfies the triangle inequality and will also &e
norm. It is also easy to see thg) = 0 implies that x = 0 for any[JX. It is also easy to prove thatXfis a

metrisable locally convex spacB(Ax) < F(x) for anyx whenever & A <1. HenceforthF will denote the
function as defined above.

Theorem2.4 [4]

Let X be a metrisable space avid metric ANR. Fore > 0, there exist8 > 0 such that for any two maps
f,g:X — Y such that(f(x),g(x)) < ¢ for all xL1X andd-homotopyj;: A — Y whereA is a closed subspace X¥fand
i=f|A andj;=g|A, there is anf -homotopyh;: X — Y such thah, = f andh, = g andh|A = j; for everyt[] I.

We now state and proof our main theorem.

Theorem 2.5
Let G be a convex closed set in a complete metrisabtljoconvex spack fori=1, 2, 3,..,n. Set)c . Let

f: C — Cbe a map withf (C) compact and let >0 be given. Then there exists a ngajC — C such that

(1) g has only a finite number of fixed points
2) F(f(x) —g(x)<e& forallx LIC.

Pr oof
We use the technique of Baillon and Rallis [1]. We define dHeviing open covering] of C where gx

&£ 12 for allx[1C andS(x) denotes the open sphere centrea with radiusr.
0 ={S, (X)where XJC\ JC, and S, (x) n UC, =¢ fori=1,2,..,n}

j#zi j#i

U{S, (X)where xIC;in CA JC and S, (X) n UC =¢ fori, k=1,2, ...,n,i # K}

j#i k j#i k

U{S, (X)whereXxICinCcn C\ UC and S, (X) n UC =¢ fori,k=1,2,.niZkk#l iz} U..0U

j#ik j#ik

{'s, (¥ where XJ()C, }.

[u]
This is a covering because for any/&, consider the se€, =({C, : xJC, }. This set is closed and does

0 O
not contairx. Then CIC, is open and so there exists0 such thatS, (x s contained in C C, . The coverind]

satisfies the following condition: (*) Iﬁ S, (x)nC#g, then the convex hull ofq...x, is contained inCy,
k=l

" I
which is contained ifC. To see this, note that sind;&SnXk (x,) n C # @, there exists 7] ﬂSnXk (x)nC and 2]
k=l k=l

Cnm for somem, 1< m < n. Then by the definition of the coverifg , each xLICy, forj =14, I, .I'. So the convex
hull of {x..x:} is contained irC. Sincem is compact, there exists a finite subcovering% by open sets
relative toC, { S%(xl) nC, Snxz(xz) nC,..., SnXk(xk) nC}

Let K denote the nerve of this covering, and || dleometric realization of K. By condition (*), |[K C.
We next construct the Schauder mapping.FatC, andi = 1, 2,..., k, set z(x )= max (0, n, - F(f(x)-x;)) and

M) = 4 (X){ S 40} . We define f for xLUC by f (x) = .4(x)x . The function f is continuous and maps

C into K|. Moreover F(f(x) - ? (X)) <&/ 2 forall XIC. Since the finite polyhedroK]||is also an ANR fot / 2,

there exists @ > 0 which satisfies the homotopy extension of Theo2.4. Further, there exist$a0 such that for

any two map$, g: [K| — |K| with F(f-g) < B, h andg ared/2-homotopic. By the Hdpconstruction, there exists a
O O g O o O

mapg : [K| — K| such thatg has only a finite number of fixed points aR@f | |[K| - §)) <B. So, f | |K| andg

ared/2-homotopic. Lety, denote the homotopy. We next define the homotoi|i— |K| by
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_ {hﬂ, 0<t<1/2
k=

h, 1/2<t<1
O
The mapj; is such thaj, = ? [IK|,ji= 1E | IK] and j, = g. Further jis 6-homotopy. So, by Theorem 4, there exists

O
ang / 2-homotopy K C — |K| such that HIK| = jand H = f onC. Set k. = g. Then since H|IK| =0, g: C—

|K] is a map with only a finite number of fixed pts and F(? (X) —g(x))<e/2 for all xLIC. Thus F{- g)<e.

Corollary 2.2 [1]
Let G be a convex closed set in a Banach spafr i = 1, 2, 3, ..n. Set|)c, - Let f: C — C be a map with

f (C) compact and let >0 be given. Then there exists a nga — C such that

3) g has only a finite number of fixed points
4) F(f(x) —g(x))<& for allx LIC.

Remark

A multifunctionf: C — C is a map from C to the set of all nonempty st#eEC. The range of fis f(C) =
O, f(X). An element XIC is said to be a fixed point of f ¥LIf(C) [13]. Is it possible for our Theorem to be
generalized to a multifunction?

References

[1] J. B. Baillon and N. E. Rallis, Not too manyéid points, Contemporary Mathematics, 72, (198B}; 25.

[2] R. F. Brown, The Lefschetz fixed point theore®eott, Foresman and Company, Glenview, lllino8 1L

[3] C. E. Chidume, Applicable Mathematics, Intaromal Centre for Theoretical Physics, Italy, 1998

[4] J. Dugundiji, Absolute neighbourhood retractd &tal connectedness in arbitrary metric spacemsitio Math., 13
(1958), 229 -296.

[5] J. Dugundiji, Topology, Allyn and Bacon, Inc.po&on 1969.

[6] 0. Hadzic, Fixed point theorems in not necdfséwcally convex vector spaces, Lecture Notedviathematics, 948
(1982), 118 — 130.

[7] H. Hopf, Uber die algebraische Anzahl von Firgten, Math. Z., 29 (1929), 493, 524.

[8] G. Kothe, Topological vector spaces |, Springerlag, 1969.

[9] J. O. Olaleru, On weighted spaces without adamental sequence of bounded sets, Int. J. Matlh.Mai.,30(8),
(2002), 449-457.

[10] S. Park, Fixed point theorems on compact eansets in topological vector spaces, Contempadviathematics, 72,

(1988), 183-191.
[11] A. P. Robertson, W. J. Robertson, Topologieaitor spaces, Cambridge University Press, 1980.
[12] H. H. Schaffer, Topological vector spaces,isger- Verlag, 1999.
[13] H. Schirmer, Fix-Finite Approximation of n-wa#d multifunctions, Fundamenta Mathematicae, CX29I84), 73-80.
[14] A. Stouti, Fix-Finite Approximation Propertg normed vector spaces, Extracta Mathematicae),1(2(02), 123-130.

Journal of the Nigerian Association of Mathematic&hysics Volume 1(November 2006)167 - 170
On finitely many fixed points J.O.Olaleru J of NAMP



