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Plasma heating by non-linear wave-Plasma interaction
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Abstract

We simulate the non-linear interaction of waves wh magnetized tritium
plasma with the aim of determining the parameter vlues that characterize the
response of the plasma. The wave-plasma interactiohas a non-conservative
Hamiltonian description. The resulting system of Hanilton's equations is integrated
numerically using fourth order Runge-Kutta scheme.lIt is found that for wave
amplitude a as low as 0.01Bthe response of the plasma is remarkably different
from the prediction of linear response theory. Theresponse cannot be explained in
terms of whether or not the wave frequencyw is a harmonic of the ion cyclotron

frequency Q. The scaled drift velocity of the ionsa. and the scaled phase velocity of
the waves B were found to be more relevant in explaining the esponse

characteristics. For a >> B, the plasma response is found to be chaotic whifer

o <<, the response is either periodic or quasi-periodid-or o =f3 the waves do

not interact with the plasma. The energy depositior{heating) by the waves in the
plasma is found to be enhanced when the interactionccurs in the chaotic mode. In
this mode, plasma diffusion is negligible suggestjnthat chaotic interaction of waves
with plasma may enhance containment of the plasma.

Keywords Wave-plasma-interaction, Phase-space, Poincatiess,
Chaotic-response, Quasi-periodicity.

1.0 Introduction

lon and electron cyclotron resonance (ICRH and ELRéating are a few of the many methods being
studied for the heating of plasma to attain themaeterar fusion temperatures. The ICRH and ECRH sserdially
similar in concept, differing only in frequency g The ICRH is however, by far the most importom the
point of view of applications. The energy extrachsdthe electron component of the plasma is usudtyavailable
to the ion components. However, it is the ion-congrd that undergoes fusion. Using ECRH to heatnmdathus
requires an extra mechanism that will modulateaupte the electron energy to ions. In spite of ghiertcoming
ECHR is being studied intensively for other reas@wmurces of waves in the ECRH regime are readiajlable
from high-power microwaves from gyrotron and tumafrke-electron lasers. Electron heating also fitidsct use
in providing thermal barriers in mirror devicesvesll as pressure profile modification in tokamakg [

In this paper we shall be interested in the ditesating of ions. Fast electrostatic waves in the io
cyclotron resonance regime have been envisagediog lzapable of heating ions [2]. The nature ofitteraction
is qualitatively different in the presence or alisenf, and on the direction of propagation of thavev In the
absence or if the waves propagates in the direafothe magnetic field, heating mechanism is afteld to
conventional Landau damping as a result of trandi&pping in the potential trough of the wavesr Bmall
amplitude waves propagating across a magnetic, filtesl well known that interaction between the ws\and ions
occur only if the wave frequenay is exactly some integral multiples of the ion ofrbn frequency [3]. Under
this condition, the phase space of ions consist®ofintersecting spiraling trajectories in contrtasclosed orbits
when there is no resonance. If the plasma is aitecumponent one with different ion specie concditrs, heating
may occur as a result of mode conversion from, reegeonic to electrostatic waves [1].
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The results of linear response theory are limitedery low amplitude waves. When the wave amplitisde
appreciable, non-linearity enters the problem amel loas to recourse to computer simulation to gaight about
the response of the system. In this paper we stmule interaction of magnetized tritium plasmahwfinite
amplitude waves in the ion-cyclotron frequency &rgrevious attempts on this problem [4], [5], emgpl the use
of some canonical transformation to suppress tpéaiixtime dependency of the Hamiltonian of intetfan thereby
increasing the dimension of the problem with thesded time coordinate In other words the plasma and the
waves have been combined into one conservativeersystWe think the response of the system is better
demonstrated by letting the system (plasma) anch ayme i.e. in contact with a wave reservoir. ThEsmore
important from the point of view of application tinat simulation can easily be used to charactéhieeparameters
of the system and the reservoir that lead to sigeEponse. This has become a widely used methex ia the
design of new materials. In section Il we discheefly the theory of the model and the computatloscheme,
section Il deals with the results and discussitiiievconclusion is in section 4.

2.0 Theory of the wave-plasma interaction model

We consider a tritium plasma placed in a uniforragnetic field, B=Bk, directed along the z-axis.
Magnetic field in-homogeneity can introduce turlmge that may be difficult to differentiate from then-linear
nature of the wave plasma interaction [6], [7]. dilestatic waves propagating in the x-directiomppadicular to
the magnetic field are applied to the plasma. Quly frequency waves of the ion-acoustic type anesaered so
that it is only the tritium ions that respond t@ tiwaves. The electrons formed a negative neutnglibackground
for the ions. The magnetic field and the electietdf of the waves are furnished by the vector arades potential#\

and @:
BO g =
= 7(-y| + X)) (2.1)
@ =g, sin(kx —wt) (2.2)
respectively, where Bis the magnitude of the magnetic fiedd, is amplitude of the wave electric potential while
and w are the wave number and frequency of the wave. [Th& and £1® yield the magnetic field B and the

electric field E of the waves respectively. By remging ion-ion interaction, the system is essdgtial one ion
system and may be described by the Hamiltonian, H

H = i[(pl _ €8, y)? +(p, + ZeZB" X)% + pj} + Zeg, sin(kx — ot) (2.3)

2m 2

where, m is ion masgy, p., psarex, y, zcomponents of the ion momentueis electron charge (for tritiumz({ =1),
X, y are positionst is time and other symbols are as already defined.
The Hamilton canonical equations of motion are

x = oM -i(p - %, y)
oP, m- - 2
y=20 2L, + Bey
apz m 2 (24)
. oH 1 keg, .
plz_a_xz_m(pz-'_%eBoX)%eBo_ m Sln(kX_C()t)
, Q
Pr =~ (P~ 2€B,Y)
where 2 =— is the ion cyclotron frequency arfé is a constant and hence thmotion is a linear motion, which

separates from theandy motions, and it is of no further interest. Dimemdéss variables were by measuring time
in inverseQ, length in inversd, velocity inQ/k so that equation (2.4) in dimensionless form bexom
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X=R-3Y, Y=P+iX
pl:_%pz—%x—asin(X—VT) (25)
P,=1P -1Y

ke¢,/B, _ E, /B,

QIk QIk
Equation (2.5) is the model of our wave plasmaradgon. The equations are formally identical te torentz force
law equation if the Legendre type of transformatisnused in expressing the Lagrangian in terms hef t
HamiltonianH, i.e.

where g =

, Eo=dk is the amplitude of the electric field of the waw=wt and v =%.

L=>q.p, —H (2.6)
k
where in this case the mechanical momentysPelated to the canonical momentum P through
ZeB
P, =P+ > o (2.7)

Because the Hamiltonian is explicitly time deperdiedoes not fall into the general class of comative non-linear
systemy + g(y)y +f(y)y = Ofor which standard techniques such as operatdtisgliand integrals of motion are

applicable [8]. The consequence is that error egémare difficult to assess. One has to rely maostlintuition and
the hope that what works well for a reduced systeay work well for the extended system.

Fourth order Runge-Kutta scheme was used in iategy equation (2.5). The phase space of the myiste
four dimensional (4-D), the display and interprietaiof which is very difficult. Components of thbase space may
be plotted but these often give wrong impressiooualthe response of the system. Poincare methodused to
project the 4-D phase spack, [, P, P,) onto the 2-D phase plane (). Starting from the surfacé = 0, with
P,>0, equation (2.5) was integrated numerically viiitial conditionsX,, Py, until Y= 0 with P, > 0 [9], [10]. The
X; andP; at this stage were extracted and plotted.

The response of the system was assessed qualitativeugh visual examination of the phase space
trajectories and their Poincare sections, quasalirdiffusion theory and the guiding centre flutitwa The rate of
power dissipation by the waves in the plasma falldwhe quasi-linear approximation [3].

® (v ay (2.8)
dt ov

wherev is the perpendicular velocity, = number density, m = mass, aRds particle distribution function. The
diffusion coefficientD was calculated using the formula

TE’w? & .

D= mé\]i(kv/g)dw -iQ) (2.9)

whereJ; is the Bessel function of orderanddis the Dirac delta function, other symbols areadly defined. The
asymptotic form of); of order 2 was used in equation (2.9) [11]. Theagign above holds for resonance situation.
When resonance is destroyed and turbulence takersves computed the diffusion coefficient accordingthe
formula.

= eon 20)2 1 (210)
2mk 2V2 (k 2V2 _ 602 )1/2
To estimate the integral in equation (2.8), a ramammber generator generates an array of 100G igapmsitions
and momentum which were followed in time accordiogequation (2.5)). The number of oparticles lyinghe

velocity intervalv andv + Av were counted and the integral was replaced byracuer the particle velocities. An
estimate of diffusion was also made using a particliding fluctuation

(Br, ) =(X(t)- r:Q Y +(Y(t>—% Y —(X(0)- r:Q Y +(Y(o)—% Y (211

3.0 Results and discussion
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The response of the plasma depends on the wavitas(k,, the strength of external magnetic fidigl
and hence the cyclotron frequengy the wave frequency, the initial conditions of the particle§, P; and the
wave numbek. The electron charge e is assigned simulationevafulC,B, = 1T, tritium massm = 1g, and the
cyclotron frequencyQ/27r = 1Hz thereforea = E, (magnitude). These choices, though arbitrary aasaeable
because in application higher values of externajmatic field are rare and they are often fixed.uattvalues like
the electron charggll0*°C can easily cause floating point processing efioromputers. The tritium ion charge
and mass are fixed constants, which cannot aleedyinamics except, by a scaling factor. The integraime step
h =0.01sec was found to reproduce a closed ellgtiit in the absence of waves which is in agre¢méth the
analytic result of a charged particle motion inréfarm magnetic field. When the wave amplitudenfnitesimal
but finite, 0=0.01B,, the phase space trajectories for integral mekipf wave frequencie® =2Q, 3Q, 4Q,...
remain elliptical as if there were no waves. Howeter the same wave amplitude=0.01B)), the frequencieso
=0.5Q, 0.8, 2.5Q (non-integral multiple 0f) give rise to non-intersecting spiraling traje@sras shown in fig.1la
(for 0 =0.22), meaning that for these frequencies the wavesdot with the plasma. This result is contraryhte t
prediction of linear response theory that resomateraction between waves and particles occurs wiign the
wave frequency is some integral multiple of the égnlotron frequency.

When the wave amplitude = 0.5B,, andw =1Q, 2Q, we observed that whil®@ =1Q leads to intersecting
trajectories,w =2Q does not even though both frequencies are integuétiples of Q (fig. 1b and c). Whew =
1B,, the phase space trajectories appear nestad #@.523412 and 2.314Q. In this case the wave frequency and
the cyclotron frequency bears no common ratio tiidlse appear to have shown that frequency rel&ijpagone in
not sufficient to determine the response charastiesiof the wave -plasma interaction.

Figures 1(a-c) are only (XyPcomponents of the 4-D phase space (X;,P4. The other component (Y,P
have similar form. The components do not give aemmicture of the 4-D phase space. A projectibthed* -

02 by Poincare procedure are shown in figure 2(a&FH trajectories that appeared complicated onXtRe)(plane
showed quasi-periodicity fap = 2.31412 and double quasi-periodicity fos = 2.52341 (a and b respectivelyo;
=1B,). However, forw =0.5Q, 2Q (a=1B,), the Poincare sections appear chaotic as thef atints on the surface
Y = 0 do not lie on any discernible closed cunig.(2c and 2d). Here one frequency is integral iplgltof Q while
the other is not but both lead to chaotic respoiiseis the Poincare sections too, have shown tlapliisma
response cannot be explained in terms of frequeiationship (,Q) alone.

To account for the appropriate conditions for teeponse characteristics, we computed many Poincare

sections corresponding to various Q and evaluated the empirical relatign= i(ﬁ)mﬂ . Table 1 gives a
4 o k

summary of the results plus appropriate remarkipglffom the visual observation of the Poincarenplé&,P,).

Table 1: Scaling values of ion drift and wave phaseelocities.

= 1. Q ®
e 5 B = Z(K) 1 * Remark
0.2 0.01 0.0855 Q.P
0.5 0.01 0.1575 Q.P
0.5 0.1 0.1575 Q.P
0.5 1.0 0.1575 C
0.8 0.01 0.2154 Q.P
1.0 0.5 0.2500 S.C
1.0 2.0 0.2500 C
2.0 0.5 0.3969 Q.P
2.0 2.0 0.3969 C
2.5 0.5 0.4605 N.I
2.5 6.0 0.4605 C
2.52347 0.01 0.4638 Q.P

Q.P=quasi-periodic, C=chaotic, S.C=slightly chaoticN.I=no interaction.

We deduce that for periodic or quasi-periodic ariitc<p , wherea = E-/B° while for chaotic orbits
Q/k
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o >>ﬁ . Fora ZB the waves do not interact with the plasma. FEquation (2.5)we see thao is the scaled drift

velocity of the ions Whileﬁ as defined is the scaled phase velocity of the waleother words the wave plasi
interaction is chaotic if the scaled ion drift velly is much greater than the scaled wave phaseirg.

(a

05 —

0o —

a=0.01B, w=0.1Q

a=0.58, «=1Q

The energy dissipated lije waves in the plasma within the simulation tisi@umerically equal to the total ar
under the powetime curves. Figure 3(a and b) shows that the p-time curves forx =0.01B,, «w=0.5, anda=2B,,

w=2Q respectively. The power dissipation in the ma for &<<E(for which the orbits are queperiodic,

Figure3a) is very small compared with that for wh o >>E (chaotic orbits Figure (3b).

The guiding centre diffusion r a=0 (no incident waves) shows uniform oscillatiomat the guiding
centre Figure 4a). For slightly chaotic interaecti(0=0.5Bo, w=1Q), the oscillations damp out within half t
simulation time (Figure.4b). For fully chaotic stion the guiding cere diffusion is nearly zero for more th
threequarter the simulation time. In the absence of reglemagnetic field the diffusion coefficient norltyahas
linear time dependence [12]. The presence of magfield introduces oscillations in the guid centre. The effect
of linear time dependence of diffusion would bet thfataking the plasma across the magnetic fielthéocontaining
vessel. Under chaotic interactiarith the waves, the randominization of the phasgcspserves to mix the plasi
thoroughly and the near zero diffusion may suggakianced containment of the pla.
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Figure 2: Poincare section of the 4-D phase spackion
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The initial conditions for the Poincare sections>@a~ 1.0,Y=0.0, P,=0.2,P,=0.5
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Figure 3: Power deposition profile.
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4.0 Conclusion

We have found that wave-plasma interaction is alim@ar mechanism that cannot be explained in terms
of the ion cyclotron frequency and the wave freqyeslone. The interaction depends sensitively enatmplitude
of the wave, the magnetic field strength as welthees phase velocity of the waves. Foas low as 0.(8,, the
interaction has a remarkable departure from theymgtions of

150 —f

B (4b)

50 —

T T
0 100 200

o =0.5B, o =1Q

200 —

(4c)

100 —

T T T
0 100 t 200

a = 2B, w=2Q
Figure 4: Guiding centre diffusion for wave-plasmainteraction.
linear response theory. The nature of the intevaatiay be inferred from the scaled drift velocity,of the plasma
ions and the scaled phase velociﬁ/of the waves. For >>E , the interaction is chaotic while fox <<E the
interaction is periodic or quasi-periodic. Theradsinteraction fora =E . The heating of the plasma is substantially

higher when the interaction occurs in t5e>>ﬁ mode than in thex <<E . The near zero guiding centre diffusion
under chaotic mode seems to suggest that chaotie-plasma interaction may enhance plasma containmen
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