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Abstract 

 
In this paper active controllers and recursive backstepping controllers are 

designed for a third order chaotic system. The performances of these controllers in 
the control of the dynamics of the chaotic system are investigated numerically and 
are found to be effective. Comparison of their transient performances show that the 
rate of convergence of error is faster for the active controllers than for the recursive 
backstepping controllers. However, the flexibility in the choice of the control laws 
for recursive backstepping design gives room for further improvement in its 
performance and enables it to achieve the goals of stabilization and tracking. 
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1.0 Introduction 
 

Chaos control is directly related to the observer problem in control theory [1]. It has been show that the 
control of chaotic system has many potential applications in chemical reactors, biomedical systems, ecology, laser 
physics, secure communication [2-4], to mention but a few. 

The origin of chaos control is traceable to the pioneering work of Pecora and Carroll [5], in which 
replacement method was employed to achieve synchronization, in 1990. Thereafter several methods were 
developed, notable among which are linear feedback [6-9], adaptive synchronization  [10-11], sliding mode control 
[12-13] active control [14-18], backtepping design [19-21]. 

Chaos control using active control was proposed, in 1997, by Bai and Lonngren to control Lorenz system 
[17-18]; and has been used to control other system [16-18]. The method was later extended to non-identical systems 
by Ho and Hung [17] using a scheme called generalized active control (GAC), thereby demonstrating the advantage 
of the active control technique over other controls schemes. Active control has been used to control many chaotic 
systems [22-26]. 

In the last decade, backstepping based designs emerged as powerful tools for stabilizing chaotic systems for 
tracking and regulation purposes [27]. Based on recursive application of Lyapunov’s direct trajectory. A major 
advantage of the backstepping controller is the flexibility in the choice of control law so that the goals of both 
stabilization and tracking are achieved. This flexibility is possible through the construction of a Lyapunov function 
whose derivative can be made negative definite by a variety of control laws rather than by a specific control law [27-
28]. In this paper active controllers and recursive backstepping controllers are designed for a typical third order 
chaotic system and their performance, investigated by numerical computation, are compared. The rest of the paper is 
organized as follows. In section 2 the active controllers are designed; in section 3 the recursive backstepping 
controllers are designed; section 4 present and discusses the results while section 5 concludes the paper. 
 
2.0 Design of active controllers 
 

As a simple yet practical nonlinear system example one chooses the following third order state 
representation  
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Suppose that system (1) is the drive system, then the response system is  
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where ( ) 3,2,1, =itui  are control functions to be determined. Subtracting (2.1) form (2.2) we obtain the error 

dynamics as  
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where .3,2,1, =−= ixye iii   We now re-define the control functions, to eliminate terms in (2.3) which cannot 

be expressed as linear terms in 21 ,ee  and 3e , as follows: 
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Substituting (2.4) into (2.3) we have 
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Using the active control method, we choose a constant matrix A which will control the error dynamics (2.5) such 
that  
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In (2.7) the three eigenvalues 21 ,λλ  and 3λ  have been chosen as -1,-1 and -1 in order that a table synchronization of 

systems (2.1) and (2.2) in achieved. 
 
3.0 Design of recursive backstepping controllers 
 

The system (2.1) is now written as, [29] 
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where ( )tu1  and ( )tu2  are the control function to be determined.  In recursive backstepping control the values of 

21 ,xx  and 3x  are controlled to take desired values dd xx 21 ,  and dx3 , respectively, and the error signals are, 

therefore defined as  
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 333 dxxe −+=     (3.2) 

 
 
 
In the design method we let 01 =dx  (or any desired function) 112 ecx d =  
     

23123 ececx d +=     (3.3) 

Substituting system (3.3) in system (3.2) and substituting the resulting system of equations in system (3.1) gives 
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Where 3c  has been set to zero ( )03 =c  to eliminate the term containing 1u  in the expression for3e& . 
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The time derivative of equation (3.5) is 
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Substituting (3.4) in (3.6) and making the choices 11 =c  and LFc −−= 12 , which reduce the number of terms and 

eliminate LF , we have 
31221 eeceu −−+=  

    ( ) ( )  1.3 2
211232 eeeceu ++−−=   (3.7) 

where 3,2,1, =iki  and 2,1, =iui  have been chosen such that 0=V& ; in which case 0,0 321 ≠== kkk  since 2k  

and 3k  are coefficient of 1u  and 2u  respectively  

 
4.0 Numerical result  
 

The 4th order Runge-Kutta algorithm was employed to solve systems (2.1) and (2.2) simultaneously with a 
time grid of 5.0,05.0 =LF  and the initial conditions ( ) ( ) ( ) === 0,00,00 321 xxx 0 

.01, ( ) ( ) ( ) .06.0001.00,01.00 321 === yyy   Figure (1) shows the attractor in phase space of the drive system (1). 

When the active controllers 3,2,1, =iui  are switched off the error states ( )321  and , eee  oscillator chaotically as 

shown in Figure (2), for1e . When the active controllers are switched on at 60=t , the error states 21,ee  and 3e  

diminish to zero as shown in Figure (3), for 1e  showing that the two systems are synchronized. 

The 4th order Rung-Kutta algorithm was also employed to solve the backstepping control system (8) with 
the same conditions as in the active control above. When the controllers are switched off one obtains the same 
chaotically oscillating error states as in Figure (2). Figure (4) Shows the error states when the controllers switched 
on at 60=t . Again the errors diminish to zero showing that the state variables are controlled to take the desired 
values. Figure (5).  Compares the transient error states of the two controllers. It can be observed that the active 
controllers reduce the errors to zero much earlier than the recursive backstepping controllers. However, the 
flexibility in the choice of control laws for the recursive backstepping controllers gives room for further 
improvement in its performance. 

 
5.0 Conclusion  
 

Active controllers and recursive backstepping controllers were designed for a third order chaotic system. 
The performance of these controllers in the control of the dynamics of the chaotic system were investigated 
numerically and found to be effective. Comparison of their transient performances shows that the rate of 
convergence of error is faster for the active controller than for the recursive backstepping controller. However, the 
flexibility in the choice of the control laws for recursive backstepping design gives room for further improvement in 
its performance and enables it to achieve the goals of stabilization and tracking. 
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Figure 1: Chaotic attractor in phase space of the drive system ( )1  

 

 
 

Figure 2: Time evolution of the error state  in the absence of control. 
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Figure 3: Time evolution of the error stare with the active controllers  activated at  

 
 
 
 

 
 

Figure 4: Time evolution of the error state  with the backstopping controllers  activated at . 

 
 

 
 

Figure 5: Time Evolution Of The Transient Error State  With Active Controllers (Thick Line) And Backstopping 

Controllers (Thin Line) Activated at  
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