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Abstract

We report here, the existence of measure synchrogition (MS)
in a coupled Hamiltonian system associated with thmotion of particles
in a periodic potential of the pendulum type. We sbw that the
oscillators can assume chaotic MS stares vis quasijpdic measure
desynchrononized state. In the chaotic MS state, ¢hphase difference of
the tow oscillators performs a stick-slip and randm-walk-like motion
analogous to the phenonomention of intermittency at¢ady established
in the classical chaotic pendulum.
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1.0 Introduction

One of the fundamental non-linear phenomena obdeim nature is synchronization. The
intriguing concept of synchronization in non-linegystems is very relevant for a wide range of
applications in Physics, Chemistry, Biology, seccoenmunication and design of oscillator generators
[1]. In the last decade, it has received much @tirrand some comprehensive reviews and books have
appeared in the literature [1-4]. With the develepinof non-linear dynamics, the classical concépt o
synchronization has been extended from phase-Igokih periodic oscillators to that of chaotic
oscillators. The synchronization of chaotic systemsparticular presents a challenge since a cbaoti
system is extremely sensitive to small perturbationinitial conditions.

In contemporary literature, many kinds of chaoschyanization have been well described.
These includes complete synchronization (CS) [5-&g synchronization (LG) [9], phase
synchronization [9-13], anticipated synchronizati@®) [14, 15] and measure synchronization (MS)
[16-21]. Here, we have only referred to few relavittieratures in these directions. So far, mosthef
studies in this field have focused on dissipatiysteams. However, in a recent study, Hampton and
Zanette [16] presented the concept of measure synidation (MS) between identical Hamiltonian
systems. Since the, some researches have investittee phenomenon of MS in coupled Hamiltonian
systems [17-21]. The main characteristics of MSthat two oscillators share the same phase spahe wi
the same identical invariant measure, though theynat strictly synchronized in the original semge
synchronization.

Hamiltonian systems are very significant becausenympractical systems can be well
approximated by Hamiltonian formalism even at weiddsipation. Since there is a direct connection
between any classical Hamiltonian system and igstyum version, it is possible to extend the conoépt
MS and the controlling approach to quantum systé®j. [Thus, investigation the behaviour of MS in
coupled Hamiltonian systems is beneficial in thedamstanding of its possible link with quantum
systems.

In previous studies, we show the existence of MEpartial MS phenomenon, in a Hamiltonian
system associated with the Nonlinear Schrédingeiakon [20, 22] and the Duffing Hamiltonian system
[21] respectively. While the study of synchronipatiin coupled Hamiltonian systems has remained an
open research field that has received relativedg Btention, in this present paper, we examirgisbile
in the context of a familiar Hamiltonian systemasated with the motion of a particle in a periodic
potential of the pendulum type [23].
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2.0 Model and formulation

Let the Hamiltonian describing the motion of a jué&tin a periodic potential be given by:
2 _ 2
H :L+V(qi)+KM (2.1)
2m 4

Here, V(g )=1-cosq (2.2)
is the periodic potential associated with the ¢etdiin of the pendulum [23]q; is the generalized
coordinates,m is the mass taken to be unity ap, is the generalized momentum. The last term
(coupling term) on the right hand side of equati@l) is equivalent to the interaction energyv K
being the coupling parameter that determines tieagth of the coupling.

Substituting equation (2.2) in equation (2.1), tbsulting Hamilton’s equations of motion take
the form:

ai = bi (2.3)

p; =sin g, + K (Qi+1 t 0 2Qi)
Let us consider a simple case of two oscillatorenetii =12. For i =1 and considering the allowed
regions, theqy = ¢, equation (2.3) reads:

g = P (2.4)

p, =sin q, + K (g, - a,)
Similarly, wheri = 2, we have:

4 = P2, (25)

p, =sin g, + K (q1_ QZ)-
Equations (2.4) and (2.5) are a set of coupled mianbequations derived from the non-integrable-non
linear Hamiltonian (1) and therefore cannot be edlanalytically.
Thus, we employed the standard Fourth order Rung&akoutine to solve equations (2.4) and (2.5)
numerically. The dynamics of systems (2.4) an8)(8epends o K as well as on its initial conditions.
By varying the coupling streng K, the total energy can be regarded as an irreleparameter by
suitable scaling. Thus, we fix the total eneH = 25 throughout the paper. Also, we g (t = 0) =0,
a configuration which ensures that the interacéinergy

E =K (Qi+1 t 0~ 2qi) (2.6)

is given zero initial value K =0, so that any slight adjustment K does not change the total energy,
for any initial choices o pl(O). Thus, in our model, there are two adjustable param#terinitial

conditions p; and the coupling strencK .

3.0 Result and discussion

We simulated the coupled systems (4) and (5) and studiedrtsmigal behaviour using the
initial conditions and the coupling parame K - as the control parameters. We found that three kinds of
MS states: periodic, chaotic and quasiperiodic can beredd depending on initial conditions. Here, we
report on the chaotic MS states intermingled with quasideriMS states. The initial conditions for the
coupled systems were set as followg,(0)=q,(0)=0,p(0)= 01 ancp,(0)= +/2€ - p? - This
configuration ensures that the initial trajectories assurdeusle-well orbit so that a cross-well chaos
can be obtained as employed in ref. [21]. We note thadr atbnfigurations can lead to single-well
trajectories. For instance, by settiq,(0)= 05 and retaining the other initial conditions, one of the

oscillators would be confined to the positive potentidl atg;, = 20.

We start by plotting in Fig. 2(a) the periodic dsbior oscillators (1) and (2) for zero coupling,
that isK =0. When a small non-zero coupling is switched on,fetend that the external layer of the
oscillator (1) approaches the external layer ofllasor (2) (and vice versa) at the initial boungas
shown in Fig. 2 (b); herk = 0.0025. The oscillators are quasiperiodic and no MS a&de The time
series of thg;, shown in Fig. 3(a) and (b) respectively confirtie periodicity and quasiperiodicity of
the orbits in Fig. 2(a) and (b). In the case wt ql(O) = 05 (not shown), the interaction via the coupling
enables the oscillator (1) undergoes a tunnelingsacthe potential hill g =0. When the coupling

strength K is gradually increased to 0.1, the two orbits begi share the same phase space due to
coupling in their chaotic state.
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As the coupling strength is further increased a K = 0.1, different topological structures
which are essentially quasiperiodic and chaotic 3#es can be captured. For instanceK = 05, we
plot the trajectories corresponding to the two tsrbi their chaotic MS states. In Fig. 3 (c), wstify the
chaotic behaviour by showing the irregular timeletion of the generalized coordina ¢, forK = 05.

In order to clarify the MS transitions, we calceldthe bare energith, = (Ei>,i =12

h,, = TijoT E,, (t)dt (3.1)
E,, (t): prz +sin q,,, (3.2)

and the average interaction energy
I M CHOREN O (3.3)

In Figure 4(a), it can be seen that there is finiference betweelhy and h, below the transition
critical coupling K. = 0.1 while aboviK,, both oscillators begins to assume relatively iidah bare
energy. To reac hy = hy, in the chaotic state, extremely long time rureiguired, this explains wkh »

fluctuate just after the MS transition in Fig. 4(&Jthough Fig. 4(b) appears to depict no relatiops
between K and average interaction enehyy it can be observed thily increases before the MS

transition regime and decreases monotonically #fietransition. Wang et al [17] have conjectutteat t
such behaviour can be explained based on the avgragse difference between the two oscillators
defined by

<\Ae\>:TlfoT | a6() mldt
£6(t), san [a60)][7-|a6é(t)mod 7]

ae(t) =6, (t)-o, (t)
6, (t) = arctan (pi /qi)[l [0,277],i = 1,2. (3.4)
In equation (3.4) 6l2(t) is defined in the rang[O,Zn] and AH(t)m is define in the rang[— n,n] son as
to indicate the relative positions of two oscill@an the phase plane. In Figure 4(c), we show timat
phase differenc <|AH|> increases monotonically befiK, = 0.1, until it reaches a peak val (= 135) at

K. BeyoncK,, <|AH|> also decreases monotonically with intermittentaliginuities, i. e. Stick-slip

and random-walk-like motion. The discontinuitiese aanalogous to intermittent synchronization
associated with de-synchronous activities in datsie systems [24-27]. Thus, implying that the
oscillators can never phase-lock in the chaoticdtée.

4.0 Concluding Remarks

In summary, we have shown the existence of measgurehronization (MS) in a Hamiltonian
system associated with the motion of particles pegodic potential of the pendulum type; particula
emphasis on the transition to chaotic MS state. Cléssical equation of motion of the system conside
here has been widely studied in the field of nadindynamics and the phenomenon of intermittent
synchronization have been validated theoreticaliymerically and experimentally [24-26]. Our
numerical findings for the Hamiltonian counterpaateal that three probable MS states can be reached
by this system, namely periodic, quasiperiodic enaotic MS states. The transition to chaotic MSeSta
via quasiperiodicity (QP) has been characterizétgumeasurable statistical quantities. While loinget
run is practically required for the bare energiéshe system to be identical on the one hand, the
oscillators could not permanently phase-lock; nafferform a stick-slip and random-walk-like motion.
Thus, confirming the phenomenon of intermittencyhia chaotic pendulum.
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Figure 1: The periodic potentiV(q)

Figure 2(a): The periodic orbits of the two ostdls defined by Equations (2.4) and (2.5) in (q, p)
plane. E = 25K =0. No measure synchronization exists between the dsallators. The initial
conditions are g, (0) = q,(0)= 0, p,(0) = 0.1, p,(0) = y/2E - p? . (b) As in Figure 1(a), but for a small
nonzero couplingK = 0.0025. The motions become quasiperiodic. No MS exista/den them. (c) and

(d) Same as in Fig. 1(b) with coupling increase K = 05 beyond a critical valu(KC = 0.1). The two
trajectories share the same phase space and M&cised.

Figure 3: Time evolution of the generalized cooatin ¢, for (a) periodic regime with no coupling,
K =0 (b) Quasiperiodic regim K = 0.0025 (c) Chaotic regime with strong couplir K = 05.
Figure 4: (a) Average bare energies of equatidhd) @nd (3.2, vSK. MS sets in aK =01

where discontinuous jumps hl2 can be identified. (b) Average interaction eneh, / of equation

(3.3) plotted againK . (c) Phase diﬁerenc<|A9|> VvSK showing discontinuities.

Figure 1: The Periodic Potential
2 T T T T

1_5\ | :

Vv{(a)
1

0.5 r | ]

Figure 2(a)

s =]

Journal of the Nigerian Association of Mathematic&hysics Volume 1(November 2006)127 - 136
Measure synchronization in a soupled in a period gential

U. E. Vincent, A. N. Njah, A. O. ObawoleandM. T. Azeez J of NAMP



Figure 2{b}
T

Py
-]
T

F13

Figure 2{c)

= : =
G § ) I‘ | (4
S

e
& RS : ’ 'y i\‘\{\\\ \% '
-1 - i \‘%}'2’
-2 _\‘ - = : 7 -7
sl
* 1
s 4 3 2 -1 o ; . . .
J of NAMP
Figure 2{d})
4 T T T T . . I [ I
3 |
2 L
1+
& ol | \
. 7 . b & o
b X \ = o f""-;;_‘-. .-
2k :
zg |
-4 -5 -:l -3 -2 1 a : : - -

Journal of the Nigerian Association of Mathematic&hysics Volume 1(November 2006)127 - 136
Measure synchronization in a soupled in a period gential
U. E. Vincent, A. N. Njah, A. O. ObawoleandM. T. Azeez J of NAMP



Figure 3{a}

44
(=]

A

Figure 3(b}

G4

| i
0.5 | i
i i ;‘
Ak ] : | p
! 1

5 b §

o . i i ;

“o 20 40 60 80 100

time

Journal of the Nigerian Association of Mathematic&hysics Volume 1(November 2006)127 - 136
Measure synchronization in a soupled in a period gential
U. E. Vincent, A. N. Njah, A. O. ObawoleandM. T. Azeez J of NAMP



=

-3

Figure 3(c)

éq——'—f#m

-

. 60 80 100
ime
Figure 4{a}
. T T
—
s 2 L x L
° o 0.5 1.5 2 25 3 3.5 <4
Figure 4(b)
3 T T T '
25
2
= 15
1
05
o 1 L I 1 L
05 1.5 2 2.5 35
K

Journal of the Nigerian Association of Mathematic&hysics Volume 1(November 2006)127 - 136

Measure synchronization in a soupled in a period gential

U. E. Vincent, A. N. Njah, A. O. ObawoleandM. T. Azeez

J of NAMP




(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
(10]
(11]
(12]
(13]
(14]

(15]

(16]

(17]

(18]

(19]

Figure 4(c)

T
B T T J

References

J. Kurths, S. Boccaletti, C. Grebogi and Y. HGi (2003). FOCUS ISSUE: Control and
Synchronization in Chaotic Dynamical Systems. CHe)s126-127.

M. Lakshmanan and K. Murali. Chaos in Nonline@®scillators: Controlling and
Synchronization (World Scientific, Singapore, 1996)

A. Pikovsky, M. Rosenblum and J. Kurths. Syraization. A unified approach to nonlinear
science (Cambridge University Press, Cambridgel1200

G. Chen and X. Dong. Fron chaos to order: mathmgies, perspectives and applications
(World Scientific, Singapore, 1998).

L. M. Pecora and T. L. Carroll (1990) Synchrmation in Chaotic aAttractor Systems. Phys.
Rev. Lett. 64, 821-824.

U. E. Vincent (2005). Synchronization of Riki& Chaotic using Active control. Phys. Lett. A
343 133-138.

U. E. Vicent, A. N. Njah, O. Akinlade and A. R. Solarin (2005). Synchronization of Cross-
Well Chaos in coupled Duffing Oscillators. Int.Modern Phys. B. 19, 3205-3216.

U. E. Vincent, A. Kenfack, A. N. Njah and O. ikkade (2005). Bifurcation and Chaos in
coupled Ratchets exhibiting synchronized dynanitys. Rev. E 72 (056213) 1-8

M. G. Rosenblum and J. Kurths (1997). From Rhaslag synchronization in coupled chaotic
oscillators. Phys. Rev. Lett. 78, 4193-4196.

M. G. Rosenblum, A. S. Pikovsky, and J. Kur(di®96). Phase synchronization of chaotic
oscillators. Phys. Rev. lett. 76 (1996) 1804-1807.

U. E. Vincent, A. N. Njah, O. Akinlade and R. T. Solarin (2004). Phase Synchronization in
Uni-directionally coupled Chaotic Ratchets. Chaés11018-1025.

U. E. Vincent, A. N. Njah, O. Akinlade and R. T. Solarin (2004). Phase Synchronization of
coupled Hyperchaotic Duffing Oscillators. J. Nigssdc. Math. Phys. 8, 203-210.

U. E. Vincent A. N. Njah, O. Akinlade and A. R. Solarin (2004). Phase Synchronization in
Bi-directionally coupled Chaotic Ratchets. Physkca60, 186-196.

H. U. Voss (2001). Dynamics Long-term Anticijpm of chaotic states. Phys. Rev. Lett. 87,
(014102) 1-4.

M. Kostur, P. Hanggi, P. Talkner and J. L. Bla& (2005). Anticipated Synchronization in
coupled inertial Ratchets with time-delayed feed#tba® numerical study. Phys. Rev. E. 72,
(036210) 1-6.

A. Hamiltonian and H. D. Zanette (1999). Me@s®ynchronization in Coupled Hamiltonian
Systems. Phys. Rev. Lett. 83, 2179-2182.

X. Wang, M. Zhang, C.-H. Lai and Hu (2003). &&are Synchronization in Coupkqp4

Hamiltonian systems. Phys. Rev. E 67, 066215.

X. Wang, H. Li, K. Hu and G. Hu (2002). Paltidleasure Synchronization in Hamiltonian
Systems. Int. J. Bifurcation Chaos 12, 1143-1148.

W. Xingang, Z. Ying, and G. Hu (2002). Contiogj Hamiltonian Systems by using Measure
Synchronization. Phys. Lett. A298, 383-387.

Journal of the Nigerian Association of Mathematic&hysics Volume 1(November 2006)127 - 136
Measure synchronization in a soupled in a period gential
U. E. Vincent, A. N. Njah, A. O. ObawoleandM. T. Azeez J of NAMP



(20]

(21]
(22]
(23]
(24]
(25]
(26]

(27]

U. E. Vincent, A. N. Njah and O. Akinlade (Z)0 Measure Synchronization in coupled
Hamiltonian System associated with the Nonlineair&dinger Equation. Modern Phys. Lett.
B. 737-742,

U. E. Vincent (2005). Measure Synchronizatiorcoupled Duffing Hamiltonian systems. New
J. Phys. (IOP) 7, 209-217.

A. N. Njah and R. Akin-Ojo (2002). Classicizat of the Nonlinear Schrédinger Equation. J.
Nig. Assoc. Math. Phys. 6, 19-30.

G. L. Baker and J. U. Gollub, Chaotic Dynami&s Introduction (Cambridge University Press,
Cambridge, 1990).

G. L. Baker, J. A. Blackburn and H. J. T. Smi1998). Intermittent Synchronization in a Pair of
Coupled Chaotic Pendulum. Phys. Rev. Lett. 81, &5A-

G. L. Baker, J. A. Blackburn and H. J. T. 3m{1999). A Stochastic Model of Synchronization
for Chaotic Pendulums. Phys. Ltt. A252, 191-197.

H. J. T. Smith, J. A. Blackburn and G.; L. K&a (1999). Experimental Observation of
Intermittency in Coupled Chaotic Pendulums. InBifurc and Chaos 9, 1907-1916.

J. A. Blackburn, G. L. Baker and H. J. T. Smif2000). Intermittent Synchronization of
Resistively Coupled Chaotic Josephson Junctiongs.FRev. B62, 5931-5935.

Journal of the Nigerian Association of Mathematic&hysics Volume 1(November 2006)127 - 136
Measure synchronization in a soupled in a period gential
U. E. Vincent, A. N. Njah, A. O. ObawoleandM. T. Azeez J of NAMP



