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Abstract 

 
We report here, the existence of measure synchronization (MS) 

in a coupled Hamiltonian system associated with the motion of particles 
in a periodic potential of the pendulum type. We show that the 
oscillators can assume chaotic MS stares vis quasiperiodic measure 
desynchrononized state. In the chaotic MS state, the phase difference of 
the tow oscillators performs a stick-slip and random-walk-like motion 
analogous to the phenonomention of intermittency already established 
in the classical chaotic pendulum. 
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1.0 Introduction 

 
 One of the fundamental non-linear phenomena observed in nature is synchronization. The 
intriguing concept of synchronization in non-linear systems is very relevant for a wide range of 
applications in Physics, Chemistry, Biology, secure communication and design of oscillator generators 
[1]. In the last decade, it has received much attention and some comprehensive reviews and books have 
appeared in the literature [1-4]. With the development of non-linear dynamics, the classical concept of 
synchronization has been extended from phase-looking of periodic oscillators to that of chaotic 
oscillators. The synchronization of chaotic systems, in particular presents a challenge since a chaotic 
system is extremely sensitive to small perturbations in initial conditions. 

In contemporary literature, many kinds of chaos synchronization have been well described. 
These includes complete synchronization (CS) [5-8], lag synchronization (LG) [9], phase 
synchronization [9-13], anticipated synchronization (AS) [14, 15] and measure synchronization (MS) 
[16-21]. Here, we have only referred to few relevant literatures in these directions. So far, most of the 
studies in this field have focused on dissipative systems. However, in a recent study, Hampton and 
Zanette [16] presented the concept of measure synchronization (MS) between identical Hamiltonian 
systems. Since the, some researches have investigated the phenomenon of MS in coupled Hamiltonian 
systems [17-21]. The main characteristics of MS are that two oscillators share the same phase space with 
the same identical invariant measure, though they are not strictly synchronized in the original sense of 
synchronization. 

Hamiltonian systems are very significant because many practical systems can be well 
approximated by Hamiltonian formalism even at weak dissipation. Since there is a direct connection 
between any classical Hamiltonian system and its quantum version, it is possible to extend the concept of 
MS and the controlling approach to quantum system [19]. Thus, investigation the behaviour of MS in 
coupled Hamiltonian systems is beneficial in the understanding of its possible link with quantum 
systems. 

In previous studies, we show the existence of MS and partial MS phenomenon, in a Hamiltonian 
system associated with the Nonlinear Schrödinger Equation [20, 22] and the Duffing Hamiltonian system 
[21] respectively. While the study of synchronization in coupled Hamiltonian systems has remained an 
open research field that has received relatively less attention, in this present paper, we examine this issue 
in the context of a familiar Hamiltonian system associated with the motion of a particle in a periodic 
potential of the pendulum type [23]. 
_______________________ 
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2.0 Model and formulation  
 

Let the Hamiltonian describing the motion of a particle in a periodic potential be given by: 
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Here,    ( )    1 cos ii qqV −=     (2.2) 

is the periodic potential associated with the oscillation of the pendulum [23]. iq  is the generalized 

coordinates, m  is the mass taken to be unity and ip  is the generalized momentum. The last term 

(coupling term) on the right hand side of equation. (2.1) is equivalent to the interaction energy, with K  
being the coupling parameter that determines the strength of the coupling. 

Substituting equation (2.2) in equation (2.1), the resulting Hamilton’s equations of motion take 
the form: 
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Let us consider a simple case of two oscillators wherein 2,1=i . For 1=i  and considering the allowed 
regions, then 10 qq = , equation (2.3) reads: 
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Similarly, when 2=i , we have: 
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Equations (2.4) and (2.5) are a set of coupled canonical equations derived from the non-integrable non-
linear Hamiltonian (1) and therefore cannot be solved analytically. 
Thus, we employed the standard Fourth order Runge-Kutta routine to solve equations (2.4) and (2.5) 
numerically.  The dynamics of systems (2.4) and (2.5) depends on K  as well as on its initial conditions. 
By varying the coupling strength,K , the total energy can be regarded as an irrelevant parameter by 
suitable scaling.  Thus, we fix the total energy 5.2=H  throughout the paper. Also, we fix( ) 00 ==tqi , 

a configuration which ensures that the interaction energy  
( )iiii qqqKE 211 −+= −+    (2.6) 

is given zero initial value at 0=K , so that any slight adjustment of K  does not change the total energy, 
for any initial choices of ( )0ip .  Thus, in our model, there are two adjustable parameter- the initial 

conditions ip  and the coupling strengthK . 

 
3.0 Result and discussion 
 

We simulated the coupled systems (4) and (5) and studied its dynamical behaviour using the 
initial conditions and the coupling parameter K  as the control parameters. We found that three kinds of 
MS states: periodic, chaotic and quasiperiodic can be observed depending on initial conditions. Here, we 
report on the chaotic MS states intermingled with quasiperiodic MS states. The initial conditions for the 
coupled systems were set as follows: ( ) ( ) ( ) 1.00,000 121 === pqq  and ( ) 2

12 20 pEp −= . This 

configuration ensures that the initial trajectories assume a double-well orbit so that a cross-well chaos 
can be obtained as employed in ref. [21]. We note that other configurations can lead to single-well 
trajectories. For instance, by setting ( ) 5.001 =q  and retaining the other initial conditions, one of the 

oscillators would be confined to the positive potential well at 0.22,1 =q . 

We start by plotting in Fig. 2(a) the periodic orbits for oscillators (1) and (2) for zero coupling, 
that is 0=K . When a small non-zero coupling is switched on, we found that the external layer of the 
oscillator (1) approaches the external layer of oscillator (2) (and vice versa) at the initial boundary as 
shown in Fig. 2 (b); here 0025.0=k . The oscillators are quasiperiodic and no MS achieved. The time  
series of the1q , shown in Fig. 3(a) and (b) respectively confirms the periodicity and quasiperiodicity of 

the orbits in Fig. 2(a) and (b). In the case where ( ) 5.001 =q  (not shown), the interaction via the coupling 

enables the oscillator (1) undergoes a tunneling across the potential hill at 0=iq . When the coupling 

strength K  is gradually increased to 0.1, the two orbits begin to share the same phase space due to 
coupling in their chaotic state. 



Journal of the Nigerian Association of Mathematical Physics Volume 10 (November 2006), 127 - 136 
Measure synchronization in a soupled in a period potential   
U. E. Vincent, A. N. Njah, A. O. Obawole and M. T. Azeez     J of NAMP 

As the coupling strength is further increased above 1.0=K , different topological structures 
which are essentially quasiperiodic and chaotic MS states can be captured. For instance, for 5.0=K , we 
plot the trajectories corresponding to the two orbits in their chaotic MS states. In Fig. 3 (c), we justify the 
chaotic behaviour by showing the irregular time evolution of the generalized coordinate, 1q  for 5.0=K . 

In order to clarify the MS transitions, we calculated the bare energies 2,1, == iEh ii  
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and the average interaction energy  

( ) ( )[ ] dttqtqK
T

h
T 2

2102,1

1
 −= ∫     (3.3) 

In Figure 4(a), it can be seen that there is finite difference between 1h  and 2h  below the transition 

critical coupling 1.0=cK  while above cK , both oscillators begins to assume relatively identical bare 

energy. To reach 21 hh =  in the chaotic state, extremely long time run is required, this explains why 2,1h  

fluctuate just after the MS transition in Fig. 4(a). Although Fig. 4(b) appears to depict no relationship 
between K  and average interaction energy1h , it can be observed that 1h  increases before the MS 

transition regime and decreases monotonically after the transition. Wang et al [17] have conjectured that 
such behaviour can be explained based on the average phase difference between the two oscillators 
defined by  
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In equation (3.4), ( )t2,1θ  is defined in the range [ ]π2,0  and ( )mtθ∆  is define in the range [ ]ππ ,−  son as 

to indicate the relative positions of two oscillators in the phase plane. In Figure 4(c), we show that the 

phase difference θ∆  increases monotonically before 1.0=cK , until it reaches a peak value ( )35.1≈  at

cK . Beyond cK , θ∆  also decreases monotonically with intermittent discontinuities, i. e. Stick-slip 

and random-walk-like motion. The discontinuities are analogous to intermittent synchronization 
associated with de-synchronous activities in dissipative systems [24-27]. Thus, implying that the 
oscillators can never phase-lock in the chaotic MS state. 
 
4.0 Concluding Remarks 
 

In summary, we have shown the existence of measure synchronization (MS) in a Hamiltonian 
system associated with the motion of particles in a periodic potential of the pendulum type; particular 
emphasis on the transition to chaotic MS state. The classical equation of motion of the system considered 
here has been widely studied in the field of nonlinear dynamics and the phenomenon of intermittent 
synchronization have been validated theoretically, numerically and experimentally [24-26]. Our 
numerical findings for the Hamiltonian counterpart reveal that three probable MS states can be reached 
by this system, namely periodic, quasiperiodic and chaotic MS states. The transition to chaotic MS State 
via quasiperiodicity (QP) has been characterized using measurable statistical quantities. While long time 
run is practically required for the bare energies of the system to be identical on the one hand, the 
oscillators could not permanently phase-lock; rather perform a stick-slip and random-walk-like motion. 
Thus, confirming the phenomenon of intermittency in the chaotic pendulum.  
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Figure 1: The periodic potential ( )qV  

Figure 2(a): The periodic orbits of the two oscillators defined by Equations (2.4) and (2.5) in the ( )pq,

plane.  0;5.2 == KE . No measure synchronization exists between the two oscillators. The initial 

conditions are: ( ) ( ) ( ) ( ) 2

12121 20,1.00,000 pEppqq −==== .  (b) As in Figure 1(a), but for a small 

nonzero coupling, 0025.0=K . The motions become quasiperiodic. No MS exists between them.  (c) and 
(d) Same as in Fig. 1(b) with coupling increased to 5.0=K  beyond a critical value ( )1.0=cK . The two 

trajectories share the same phase space and MS is reached. 
Figure 3: Time evolution of the generalized coordinate, 1q , for (a) periodic regime with no coupling, 

0=K  (b) Quasiperiodic regime, 0025.0=K  (c) Chaotic regime with strong coupling, 5.0=K .   
Figure 4: (a) Average bare energies of equations. (3.1) and (3.2), Kh  vs 2,1 . MS sets in at 1.0=K  

where discontinuous jumps of 2,1h  can be identified.  (b) Average interaction energy Ih   of equation 

(3.3) plotted againstK . (c) Phase difference K vs θ∆  showing discontinuities. 
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