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Abstract

| —

The ancient Egyptians used a number system based onit fractions, i.e.
fractions with one in the numerator. This idea lethem represent any fraction %

as the sum of unit fractions e.gg = l i Further, the same fraction could not be

7 4 28
used twice (sog = l+l is not allowed). In this work we examine a numbenf
7

algorithms for generating Egyptian fractions in more detail, implement them and
analyze their performance.

Keywords: Unit fractions, Splitting Algorithms, Paring Algdinim, Distinct divisors,
Length of Egyptian fraction, Lexicographic

1.0 Introduction

1.1 Definition
An Egyptian fraction is the sum of positive (usyablistinct unit fractions i.e. expression of them of

unit fractions Iike}é+}/b+%+... where the denominators a, b, c, ... are increasing. It's ititegese know that

every fraction% can be represented as a sum of distinct unit fractions [1¢actd fraction can be represented in

an infinite number of ways. Now consider
=1 1 1 a
1=+ 24+ 1% ©

So if, s_1.,1 (1.1)
4 2 4

By dividing - by 4, we have that (1.1) becomes
s_, 1,1, 1,1 (1.2)
4 2 8 12 24

Also by dividing- by 24, (1.2) becomes

s_1,t, 1,2 ,2.,1 (1.3)

4 2 8 12 48 72 144
We can repeat the process by expanding the last term and Sdhisnshows that once we have found one way of
writing % as Egyptian fraction, we can derive as many other represestasove wish.

Any number% has infinitely many Egyptian fraction representations, alghothere are only finitely

many having a given number of terms [2]. It is not kndww the Egyptians found their representations, buatytod
many algorithms are known for this problem, each behavifigrelntly in terms of the number of unit fractions
produced, the size of the denominators of the fractions antintle taken to find the representations. Our aim in

this work is to examine some algorithms, implement thamalyze their performance and improve on their
performance.
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2.0 The Splitting Algorithm

This algorithm is based on conflict resolution methodke @lgorithm which is based on the repeated use
of the equality
1 1 1
= +

X x+1 X(x+1)

employs the following simple idea: from a fracti% we can form a representation in unit fractions by making p

2.1)

copies ofl . This is not an Egyptian fraction since the unit fractiaresnot distinct. However, we can now search
q

for conflicting pairs (two copies of the same fraction) agsblve the conflict by replacing the pair with some other

fractions adding to the same value.

Next we outline the steps involved in the algorithm:

Step 1:- Given, rationa% < 1 inlowest terms

Step 2:- Write% as the sum of p unit fraction q

1
Step 3:- If there are duplicated fractions in the expansion (for any integer n), keep one of themrdmobve the
n

1
other duplicatec(—j 's by applying the splitting relation (1.1) to them.
n
Step 4:- Repeat step 3 until an expansion is reached whicto ltEsrominator duplicated.

Example 2.1
Express3 as an Egyptian fraction.
7

3_1 1 1
_ = — 4 — 4+ —

T 7 7 7
applying (4) to twol leaving one, we have
7

31,1 1 1 1
e
7 7 8 56 8 56
Again apply (4) to one of]—' & 1 we have
8 56
sttt 1., 1, 1 2.2)
7 7 8 9 56 57 72 3192

The splitting algorithm for Egyptian fractions was fidgtscribed in 1964 by Stewart [2]. Campbell [3] prowved
the splitting algorithm always work for any rational num% . The difficulty he had was proving whether or not

the algorithm will eventually terminate at some point. 1891 Laurent Beeckmans [4] proved that the so called
splitting algorithm for Egyptian fraction terminates. part of this work we also provide a proof to back up
Beeckmans proof. We note that while it's true that the esatipn involved in the splitting algorithm can be
complex, the fact that it terminates at some point givegdtilility.

As a way of extending the splitting algorithm, we idimoe thepairing algorithm [8]. Like the splitting
algorithm, it uses the conflict resolution idea. But tiise, whenever we have a conflicting pair i.e two copies of

1
some fraction—, we replace them either by a single fracti%n if q is even or by
q
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2 2 if g is odd. Note that in either cases, the fractionpliiynto have unit numerators and the order
q+1 aq(q+1)
in which this is done does not mater. Also the process combine pairs of fractions to form integers, as we see

with sufficiently many copies 01”E
q

Example 2.2

Express% as Egyptian fraction.

1 1 1
= 4+ =+ =
7 7 7

is odd, we have

1 2 2

— +

7 7+1 7(7+1)

1

28

From example 2, it's obvious that the pairing algorithmdpices less number of unit fractions when compared to

sinceq =

+

Nlw gN|w

~N |

+ =+

N

the splitting algorithm since each replacement—lo{Ll by 2 reduces the number of terms, initially p, by one,
qa q q

which can happen at most p times. Each other replacement leavestber of terms the same but reduces the list
of terms in lexicographic order; one can only perform suchateghs a finite humber of times. Therefore the
algorithm eventually terminates with a representation haatimgost p terms.

3-0 Fibonacci—Sylvester algorithm

A much more useful algorithm is the Fibonacci — Sylvesgordahm. It was first discovered by Fibonacci
in 1202 [5] and later by Sylvester [6]. The algorithmaistraight forward greedy algorithm, at each step, we simply
take the largest unit fraction less than whatever is lethorfécci used it, but did not prove that it worked. It was
Sylvester who proved its correctness. Below we try toligighthe steps involved in the Fibonacci — Sylvester
algorithm

Step 1: Given rationa% <1 in lowest term

Step 2: Assignp’ = p and ¢’ =q

Step 3: If p/ =1 let p/q, be part of the expansion and we are done; otheruse the division algorithm to
obtaing’ =Sp +r wherer <p

1 p'-r 1 .
—t— .. S0 let—— be part of the expansion
s+l qg(s+) s+1

/
Step 4. Note tha’gl =
q

step5: Letp” = p’ —randq” =q'(s+1)

n
Step 6: ReducepT to lowest terms and go back to step 3.
q

Example 2.3: Express% as Egyptian fraction.
Solution
Given 3 <1
7

3=3, 7=7
7=23+1=q =spg +r
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31 3-1 _1,.2
S + =
7 2+1 7(2+1) 3 21
Now 21=102+1
2_ 1 ,2-1_1_,1 ‘therefore3_1,1_ 1 .
21 10+1 21@1) 11 231 7 3 11 231
Next we produce a proof that the Fibonacci—Sylvesigorithm produceg or fewer terms for any rational
E, q#0-
q
Theorem 2.1
The Fibonacci — Sylvester algorithm produces anaagn with p or fewer terms for any rational
B’ q# 0-
q
Proof

The algorithm produces p_1 P
a s+l g'(s+))

Intuitively, trivially the algorithm produces at stp terms because the numerators always get smaller.

Now since P’ is in lowest terms we know that 0. At step 5 we have’ = p' —r, so the newp’ < oddp’' - 1
/

q
At step 3, we stop ifo’ = 1so there can be at mgsterms. Thus, the worst case is where r = 1 dawh and the
resulting fraction is always in lowest terms. Thbhe expansion clearly produces p terms. The n@joblem,
associated with the Fibonacci — Sylvester algorittsmthat the denominators can grow quite huge ngakin
computation difficult.

3.0 Binary algorithm

First we note that if N ="2then any m < N can be written as the sum ofmtistilivisors of N. We can
write the numbers in binary notation. Infact, nm &® written as the sum of n or less divisors,estfichas exactly n

divisorsi.e2® 21 22 271  Next, we list the steps involved in the Binalyasithm for Egyptian fractions
Step 1: Given rationaP in lowest term.
P b <1
Step 2: FindN,, <q<N, whereN, =2*.
Step 3: If =N, then write out p as the sum of k or less divisofsN,. p =id‘ and get the expansion

Otherwise go to step 4
Step 4: By dividing PN, by g we find s andr satisfying gs+r =PN,,whereO<r <N, such that

p_PN _qgs+r _ S LT

q qu qu Nk qu

Step 5: WriteS=> d, whered, are distinct divisors ofN, and writer =Y d’ whered, are distinct divisors of
N,.

Step 6: Thus we get the expansEn

1
+

y_
Nk N k
v Ma
Example 4
Express_®_ as Egyptian fraction.
21
Solution

Given > . Observe thalN, =2 =2°= 32
21
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=2v1=24=16 = N_ << N, =16<21<32. Now q=21# N, = 32, so we go to step 4
5 _ 5(32)
21 21(32)
7(21) +13
21(32)

7 13

32 2132

Note that 7 =1+ 2*4 (py step 5}. By step 6 we have,
13=1+4+8

5 _ 1 1 1 1 1 1 +}/+}/+}/+}/+}/ +y
ittt + + 87 /6" /327 /84" /168" /672

21 3% 3% 3% 21.3% 21.3% 21 .3%

Also we observe that the division by g ensuresnbatverlap occurs between the fractions fromweeparts of the
representation in step 6. Next, we produce a praifthe Binary algorithm produces a finite numbkterms.

N

k-1

Theorem 3.1

The Binary algorithm for Egyptian fractions is gaateed to produce an expansion with
D(n) <n® and L(n) =0 (logn), where D(n) and L(n) represent denominators and length respectivEiynply put
the Binary algorithm terminates.

Proof:

In step 3, note thap<qg<N, so PN, <gN, , gs+r =PN, <gN,. SoS<N,. This we can always find
an expansion for both s and r. The resulting denators of the expansion are distinct because igesvthe second
set of denominators (correspondingrjo Corresponding to s unless g is a power of it iBit were, we never
would have gotten past step 2. So the algorithmksvoln the case wherg= N, , the expansion clearly has at most

k terms. In the case wherg< N, , the expansion has at most 2k terms. Siuedog, N, , it follows that there are
at most2logq terms in the expansion. Thug(n) =0(logn . Ih the case wherg <N, , the largest denominator
can begN,, so the largest denominator must be at ngggt- . Thus D(n) =0(n* ).

4.0 Conclusion

Nowadays, we usually write non-integer numberseeitts fraction(%) or decimals (0.285714). But the

ancient Egyptians used a number system based bfragtions. Many algorithms

now exist for generating Egyptian fractions. We énawv this work examined three algorithms, whichlude the
splitting, Fibonacci-Sylvester and Binary algorithm These algorithms all have a common problem that
producing infinite number of terms which do notntérate. In line with our aim of improving thesgailithms, we
have produced theorems to bound the number of tproduced by these algorithms. Also, we have eefithe
number of terms produced by the splitting algorithyrintroducing the pairing algorithm.
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