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Abstract 
 

The ancient Egyptians used a number system based on unit fractions, i.e. 
fractions with one in the numerator.  This idea let them represent any fraction 

b
a  

as the sum of unit fractions e.g 
28

1

4

1

7

2 +=  Further, the same fraction could not be 

used twice (so 
7

1

7

1

7

2 +=  is not allowed).  In this work we examine a number of 

algorithms for generating Egyptian fractions in more detail, implement them and 
analyze their performance. 
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1.0 Introduction 
 
1.1 Definition 

 An Egyptian fraction is the sum of positive (usually) distinct unit fractions i.e. expression of the sum of 

unit fractions like ...111 +++ cba  where the denominators a, b, c, … are increasing.  It’s interesting to know that 

every fraction 
q

p  can be represented as a sum of distinct unit fractions [1] and each fraction can be represented in 

an infinite number of ways.  Now consider  
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By dividing * by 4, we have that (1.1) becomes 
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Also by dividing * by 24, (1.2) becomes 
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We can repeat the process by expanding the last term and so on.  This shows that once we have found one way of 
writing 

q
p  as Egyptian fraction, we can derive as many other representations as we wish. 

Any number 
q

p  has infinitely many Egyptian fraction representations, although there are only finitely 

many having a given number of terms [2].  It is not known how the Egyptians found their representations, but today 
many algorithms are known for this problem, each behaving differently in terms of the number of unit fractions 
produced, the size of the denominators of the fractions and the time taken to find the representations.  Our aim in 
this work is to examine some algorithms, implement them, analyze their performance and improve on their 
performance. 
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2.0 The Splitting Algorithm 

 
This algorithm is based on conflict resolution methods.  The algorithm which is based on the repeated use 

of the equality  

)( 1
1

1
11

+
+

+
=

xxxx
    (2.1) 

employs the following simple idea: from a fraction 
q

p  we can form a representation in unit fractions by making p 

copies of 
q

1 .  This is not an Egyptian fraction since the unit fractions are not distinct.  However, we can now search 

for conflicting pairs (two copies of the same fraction) and resolve the conflict by replacing the pair with some other 
fractions adding to the same value. 
Next we outline the steps involved in the algorithm: 

Step 1:- Given, rational 1<q
p  in lowest terms 

Step 2:- Write q
p  as the sum of p unit fractions q

1  

Step 3:- If there are duplicated fractions 
n

1
 in the expansion (for any integer n), keep one of them, but remove the 

other duplicated 








n

1
’s by applying the splitting relation (1.1) to them. 

Step 4:- Repeat step 3 until an expansion is reached which has no denominator duplicated. 
 
Example 2.1 

Express 
7
3  as an Egyptian fraction. 
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applying (4) to two 
7
1  leaving one, we have 
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Again apply (4) to one of 
56
1

8
1

& , we have 
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The splitting algorithm for Egyptian fractions was first described in 1964 by Stewart [2].  Campbell [3] proves that 

the splitting algorithm always work for any rational number 
q

p .  The difficulty he had was proving whether or not 

the algorithm will eventually terminate at some point.  In 1991 Laurent Beeckmans [4] proved that the so called 
splitting algorithm for Egyptian fraction terminates.  As part of this work we also provide a proof to back up 
Beeckmans proof.  We note that while it’s true that the computation involved in the splitting algorithm can be 
complex, the fact that it terminates at some point gives it credibility. 

As a way of extending the splitting algorithm, we introduce the pairing algorithm [8].  Like the splitting 
algorithm, it uses the conflict resolution idea.  But this time, whenever we have a conflicting pair i.e two copies of 

some fraction 
q

1
, we replace them either by a single fraction 

q

2 , if q is even or by  
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+ qqq
 if q is odd.  Note that in either cases, the fractions simplify to have unit numerators and the order 

in which this is done does not mater.  Also the process may combine pairs of fractions to form integers, as we see 

with sufficiently many copies of 
q

1
. 

Example 2.2 

Express 
7
3  as Egyptian fraction. 
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since q = 7 is odd, we have 
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From example 2, it’s obvious that the pairing algorithm produces less number of unit fractions when compared to 

the splitting algorithm since each replacement of 
qqq

2
by

11 +  reduces the number of terms, initially p, by one, 

which can happen at most p times.  Each other replacement leaves the number of terms the same but reduces the list 
of terms in lexicographic order; one can only perform such reductions a finite number of times.  Therefore the 
algorithm eventually terminates with a representation having at most p terms. 
 
3-0 Fibonacci–Sylvester algorithm 
 

A much more useful algorithm is the Fibonacci – Sylvester algorithm.  It was first discovered by Fibonacci 
in 1202 [5] and later by Sylvester [6].  The algorithm is a straight forward greedy algorithm, at each step, we simply 
take the largest unit fraction less than whatever is left.  Fibonacci used it, but did not prove that it worked.   It was 
Sylvester who proved its correctness.  Below we try to highlight the steps involved in the Fibonacci – Sylvester 
algorithm 

Step 1: Given rational 1<q
p  in lowest term 

Step 2: Assign qqandpp == //  

Step 3: If 1=/p  let /

/

q
p  be part of the expansion and we are done; otherwise use the division algorithm to 

obtain prrSpq <+= where//  

Step 4: Note that 
)1(1

1
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+
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+
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sq

rp

sq

p
..  So let 

1
1
+s

 be part of the expansion  

Step 5: Let )(and ////// 1+=−= sqqrpp  

Step 6: Reduce 
//

//

q

p
 to lowest terms and go back to step 3. 

Example 2.3:   Express 
7

3
 as Egyptian fraction. 

Solution 

 Given 1
7

3 <  

 3 =3,   7 = 7 
rspq +=≡+= //13.27  
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Next we produce a proof that the Fibonacci–Sylvester algorithm produces p or fewer terms for any rational 

0, ≠q
q

p . 

Theorem 2.1 
The Fibonacci – Sylvester algorithm produces an expansion with p or fewer terms for any rational 

0, ≠q
q

p . 

Proof 
The algorithm produces  

)1(1
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Intuitively, trivially the algorithm produces at most p terms because the numerators always get smaller. 

Now since 
/

/

q

p  is in lowest terms we know that r >  0.  At step 5 we have rpp −= /// , so the new 1odd /// −≤ pp . 

At step 3, we stop if 1/ =p , so there can be at most p terms.  Thus, the worst case is where r = 1 each time, and the 

resulting fraction is always in lowest terms.  Then the expansion clearly produces p terms.  The major problem, 
associated with the Fibonacci – Sylvester algorithm is that the denominators can grow quite huge making 
computation difficult. 
 
3.0 Binary algorithm 
 

First we note that if N = 2n, then any m < N can be written as the sum of distinct divisors of N.  We can 
write the numbers in binary notation.  Infact, m can be written as the sum of n or less divisors, since 2n has exactly n 
divisors i.e 1210 2222 −n,...,,, .  Next, we list the steps involved in the Binary algorithm for Egyptian fractions 

Step 1: Given rational 1<q
p  in lowest term. 

Step 2: Find kk NqN ≤<−1  where k

kN 2= . 

Step 3: If kNq =  then write out p as the sum of k or less divisors of ∑
=

=
1

1

.
i

ik dpN  and get the expansion

 ∑∑
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Otherwise go to step 4 
Step 4: By dividing kPN  by q we find s and r satisfying kk NrPNrqs <<=+ 0where,  such that 

kkkk
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Step 5: Write ii ddS where∑=  are distinct divisors of kN  and write ii dwheredr ∑= /  are distinct divisors of 

kN . 

Step 6: Thus we get the expansion 
∑∑ +

i

k

i

k

d
qN

d
N

11  

Example 4 
 Express 

21

5  as Egyptian fraction. 

Solution 
 Given 

21

5 .  Observe that 3222 5 === k

kN ,  
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1622 41

1 === −
−

k

kN 3221161 <<=≤<⇒ − kk NqN .  Now 3221 =≠= kNq , so we go to step 4 
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Note that 
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++=  {by step 5}.  By step 6 we have, 
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Also we observe that the division by q ensures that no overlap occurs between the fractions from the two parts of the 
representation in step 6.  Next, we produce a proof that the Binary algorithm produces a finite number of terms. 
 
Theorem 3.1 

 The Binary algorithm for Egyptian fractions is guaranteed to produce an expansion with 
)(log0)(and)( 2 nnLnnD =< , where )(and)( nLnD  represent denominators and length respectively.  Simply put 

the Binary algorithm terminates. 
 
Proof: 

In step 3, note that kkk qNPNNqp <<< so , kk qNPNrqs <=+ .  So kNS < .  This we can always find 

an expansion for both s and r.  The resulting denominators of the expansion are distinct because q divides the second 
set of denominators (corresponding to r).  Corresponding to s unless q is a power of 2.  But if it were, we never 
would have gotten past step 2.  So the algorithm works.  In the case where kNq = , the expansion clearly has at most 

k terms.  In the case where kNq < , the expansion has at most 2k terms.  Since kNk 2log= , it follows that there are 

at most qlog2  terms in the expansion.  Thus, )(log0)( nnL = . In the case where kNq < , the largest denominator 

can be kqN , so the largest denominator must be at most )1( −qq .  Thus )(0)( 2nnD = . 

 
4.0 Conclusion 
 

Nowadays, we usually write non-integer numbers either as fraction ( )7
2  or decimals (0.285714).  But the 

ancient Egyptians used a number system based on unit fractions.  Many algorithms  
now exist for generating Egyptian fractions. We have in this work examined three algorithms, which include the 
splitting, Fibonacci-Sylvester and Binary algorithms.  These algorithms all have a common problem that is, 
producing infinite number of terms which do not terminate.  In line with our aim of improving these algorithms, we 
have produced theorems to bound the number of terms produced by these algorithms.  Also, we have refined the 
number of terms produced by the splitting algorithm by introducing the pairing algorithm. 
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