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Abstract 
 

In this paper, we demonstrated one of the many applications of the 
Maximal Independent Set Algorithm in the area of course allocation. A program 
was developed in Pascal and used in implementing a modified version of the 
algorithm to assign teaching courses to available lecturers in any academic 
environment and it proved to be very effective. 
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1.0 Introduction 
 

A graph is fundamentally a combinatorial object. That is, a set of points (or vertices) and a particular set of 
connecting lines (or edges) out of all possible sets of such lines. A directed graph is a finite nonempty set V and a set 
E of ordered pairs of distinct elements of V; the elements of V are called vertices and the elements of E are called 
directed edges. A bipartite graph is a graph in which the vertices can be divided into two disjoint nonempty sets A 
and B such that no two vertices in A are adjacent and no two vertices in B are adjacent. An independent set of a 
graph G is a subset of the vertices such that no two vertices in the subset are connected by an edge of G. That is, an 
independent set is a set of mutually non-adjacent vertices Halldorsson (2000). A Maximal Independent Set (MIS) in 
an undirected graph is a maximal collection of vertices I subject to the restriction that no pair of vertices in I are 
adjacent Luby (1985). Graphs are applied in a variety of simple, to complicated tasks and various studies have been 
carried out on their applications Ahuja et al (1993), Halperin (2000), Israeli (1984), Lev (1980) and Miller et al 
(2001). The MIS algorithm was proposed by Ford and Fulkerson (1962) and could be applied without any 
complications to bipartite graphs. 
In this paper, we slightly modified the MIS algorithm and subsequently applied it to the allocation of teaching 
courses to available lecturers in an academic setting. The original MIS algorithm could not place a limit as to the 
number of courses a lecturer could teach while the modified version of the MIS algorithm places a limit to the 
number of courses which can be taught by any lecturer. We coded the modified version of the MIS algorithm Turbo 
Pascal which when executed, was faster, more efficient and more reliable than the traditional manual method of 
allocating courses in academic environments. 
 
2.0  The Algorithm 
 

Let G be a graph with vertices V and edges E. by a matching of G, we mean a subset M of E such that no 
vertex in V is incident with more than one edge in M. By a maximal matching of G, we mean a matching of G so 
that no other matching of G contains more edges. We say a graph with vertex set V and edge set E is bipartite in 
case V,E can be written as the union of two disjoint sets V1 and V2 such that each edge joins an element of V1 with 
an element of V2. By a covering C of a graph, we mean a set of vertices such that every edge is incident to at least 
one vertex in C. We say C is a minimal covering if no covering of the graph has fewer vertices. 
The MIS algorithm is set out as follows; 
:: Matrix representation of bipartite graph. 
Given: an independent set of 1’s in a matrix of 0’s and 1’s, 
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Begin: 
 Algorithm: Max_Indep_Set 
  1: Label with an ‘L’ all columns containing no starred 1’s (i.e. 1*) 
  2: IF<all labeled columns have been scanned> THEN GOTO Step 4 
    OTHERWISE 
   <Scan column and put ‘S’ under each scanned column> 
  3: IF<all labeled rows have been scanned> THEN GOTO Step 4 
   OTHERWISE 
   IF<some labeled but unscanned row contains no starred ‘1’> 
   THEN GOTO Step 5 
   OTHERWISE 
   <Scan row and put ‘S’ after each scanned row> and GOTO Step 2 
  4: STOP 
  5: DO {a labeled row contains no starred 1} 

a. Circle the 1 in this row and in the column that row is labeled with 
b. Circle the starred 1 in this column and the row that the column is  

labeled with. 
UNTIL <a ‘1’ is circled in a column labeled with ‘L’> 

6: Reverse the stars on all circled 1’s. {This gives an independent set of 1’s with one more 
element than the original set}. 

In practical applications, the matrix for the MIS algorithm is derived by entering a ‘1’ whenever the 
vertices corresponding to the row and column are joined by an edge and a ‘0’ otherwise. A set of entries in such a 
matrix is independent if no two of them are in the same line while an independent set of 1’s in the matrix is a 
maximal independent set of 1’s if no independent set of 1’s in such a matrix contains more elements. In the above 
algorithm, we marked the 1’s in a particular independent set with stars. 

Suppose a matrix of 0,s and 1’s has m rows and n columns. Step 1 involves looking at all mn entries in the 
matrix, which we count as mn operations. After this, the algorithm alternates between Steps 2 and 3, both of which 
involve scanning. In order to scan one of the n columns we need to look at the m entries in that column, so all 
column scanning will take at most mn operations. Similarly, row scanning will take at most nm operations. If we go 
to Step 4 we are done, so we analyze Steps 5 and 6. Backtracking will take at most m + n operations, since each 1 
we circle can be associated with a distinct row or column. Actually, we could combine Step 6 into Step 5 with no 
additional work, reversing the stars as we backtracked. Thus, one application of the algorithm will take at most 3m + 
m + n operations. To build up to a maximal independent set of 1’s the algorithm will have to be repeated at most 
min{m,n} times, even if we start with the empty set as our first independent set of 1’s. Thus, the complexity of the 
algorithm for finding a maximal independent set of 1’s in an m by n matrix is of order no more than (3mn + m + 
n)min{m,n}. For the case of m = n = 30, fewer than 90,000 operations would be necessary, and a fast computer 
could do the problem in less than one second.  
 
3.0 Application 
 

In any academic environment, teaching courses are assigned to the available teaching staff based on their 
area of specialization or subject area. Since the available courses are equally grouped the same way as the subject 
areas of the lecturers; our MIS algorithm is applied as follows; 

i. Select a particular subject area and bring out the list of lecturers available in that area 
ii.  For any match in the subjects and the lecturers, enter a ‘1’ and a ‘0’ otherwise 
iii.  Apply the MIS algorithm t o get the appropriate matching 
iv. Move over to another subject area and again apply the algorithm provided no lecturer  

is assigned more than two courses per semester 
iv. Continue applying the algorithm until all the courses have been allocated. 
v. Stop 

 
In one of the areas of specialization, PROGRAMMING LANGUAGES, we have the courses listed and a 
corresponding list of lecturers that can teach some of these courses as follows; 
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LIST OF COURSES 
CSC212 Symbolic Programming in FORTRAN 
CSC211 Programming in Pascal 
CSC222 Assembly Language Programming 
CSC312 Advanced Assembly Language and C++ Programming 
CSC322 Data Structures 
CSC422 Concepts of Programming Languages 
 
LIST OF LECTURERS THAT CAN TEACH SOME OF THESE COURSES; 
Al   CSC212 
Ol   CSC211, CSC322 and CSC422 
Ob   CSC212 
Ab   CSC211 
Ek   CSC212 and CSC312 
Am   CSC222 and CSC312 
Im   CSC222 
Nw    CSC211 
Uk   CSC211, CSC212, CSC312 and CSC322 
 
Arranging the courses (using their numeric codes) side by side with the lecturers that can teach each course gives us 
the following bipartite graph; 
 
212       Al 
 
211       Ol 
 
222       Ob 
 
312       Ab 
 
322       Ek 
 
422       Am 
 
       Im 
 
             Nw 
 
             Uk 
 
By entering a ‘1’ against any corresponding lecturer and course and a ‘0’ otherwise, we have the following matrix 
representation of the graph; 
 

 Al Ol Ob Ab Ek Am Im  Nw Uk 
211 0 1 0 1 0 0 0 1 1 
212 1 0 1 0 1 0 0 0 1 
222 0 0 0 0 0 1 1 0 0 
312 0 0 0 0 1 1 0 0 1 
322 0 1 0 0 0 0 0 0 1 
422 0 1 0 0 0 0 0 0 0 

 
The row headers are used to denote the courses to be taught while the columns header denote the available lecturers 
that will teach a course, after which we place an asterisk or star on the first available ‘1’ on each column, provided 
such a ‘1’ is the only one starred on each column and row where it appears. This gives us the following; 
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 Al Ol Ob Ab Ek Am Im  Nw Uk  
211 0 1* 0 1 0 0 0 1 1  
212 1* 0 1 0 1 0 0 0 1  
222 0 0 0 0 0 1* 1 0 0  
312 0 0 0 0 1* 1 0 0 1  
322 0 1 0 0 0 0 0 0 1*  
422 0 1 0 0 0 0 0 0 0  
   L L   L L   

 
The following source code was developed in Turbo Pascal to handle the maximal independent set operation and the 
above matrix was entered as input. 
 
{MAXIMAL INDEPENDENT SET ALGORITHM} 
 
PROGRAM Algol(input, output, Infile); 
CONST 
  RowSize = 50; 
  ColSize = 50; 
 
TYPE 
  ElementType = RECORD 
                  Value  :  char; 
                  Status :  char; 
                END; 
  RCStatus    = RECORD 
                  Labelled   : boolean; 
                  IValue     : integer; 
                  CValue     : char; 
                  Scanned    : boolean; 
                END; 
  BoolRowArry = ARRAY [1 .. RowSize] OF boolean; 
  MatArray = ARRAY [1 .. RowSize, 1 .. ColSize] OF ElementType; 
  BoolDim2 = ARRAY [1 .. RowSize, 1 .. ColSize] OF boolean; 
  ColArray = ARRAY [1 .. ColSize] OF RCStatus; 
  RowArray = ARRAY [1 .. RowSize] OF RCStatus; 
 
VAR 
  Matrix                     : MatArray; 
  Circle                     : BoolDim2; 
  ColStatus                  : ColArray; 
  RowStatus                  : RowArray; 
  UnstarredRow               : BoolRowArry; 
  Starred, LabColStatus, 
  LabRowStatus, Continue     : boolean; 
  M, N                       : integer; 
  Infile, output             : text; 
 
{THIS PROCEDURE READS THE ARRAY ELEMENTS } 
 
PROCEDURE GetInput(VAR Mat: MatArray); 
  VAR 
    I, J : integer; 
    Ch   : char; 
  BEGIN 
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    write('Enter the number of rows: '); 
 
    readln(M); 
    write('Enter the number of columns: '); 
    readln(N); 
    FOR I := 1 TO M DO 
      BEGIN 
        FOR J := 1 TO N DO 
          BEGIN 
            WITH Mat[I,J] DO 
               read(Infile, Value, Status); 
            read(Infile, Ch) 
          END; 
        readln(Infile, Ch) 
      END; 
  END; 
 
PROCEDURE Initialize(VAR Circ: BoolDim2; VAR CStatus: ColArray; 
                         VAR RStatus: RowArray; VAR USRow: BoolRowArry); 
  VAR 
    I,J : integer; 
  BEGIN 
    FOR I := 1 TO M DO 
      FOR J := 1 TO N DO 
          Circ[i,j] := False; 
 
   FOR J := 1 TO N DO 
     WITH CStatus[J] DO 
       BEGIN 
         Labelled := False; 
         IValue := 0; 
         CValue := ' '; 
         Scanned := False 
       END; 
 
   FOR I := 1 TO M DO 
    WITH RStatus[I] DO 
      BEGIN 
        Labelled := False; 
        IValue := 0; 
        CValue := ' '; 
        Scanned := False 
      END; 
    FOR I := 1 TO M DO 
      USRow[i] := False; 
    Starred := False 
  END; 
 
{STEP1 LABEL WITH AN "L" ALL COLUMNS CONTAINING NO STARRED 1} 
PROCEDURE Step1(VAR CStatus: ColArray; Mat: MatArray); 
  VAR 
    I,J  : integer; 
    LStatus : boolean; 
 
  BEGIN 
    FOR I := 1 TO N DO 
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      BEGIN 
 
        LStatus := True; 
        FOR J := 1 TO M DO 
          IF (Mat[J,I].Value = '1') AND (Mat[J,I].Status = '*') THEN 
            LStatus := False; 
        IF LStatus THEN 
          BEGIN 
            CStatus[I].Labelled := True; 
            CStatus[I].CValue := 'L' 
          END 
        ELSE 
          CStatus[I].Labelled := False 
      END 
  END; 
 
{STEP2: SCANNING COLUMNS - IF ALL LABELED COLUMNS HAVE BEEN SCANNED, 
THEN GOTO STEP4 ELSE, FOR EACH COLUMN THAT IS LABELED BUT NOT SCANNED LOOK AT 
ANY UNSTARRED 1'S IN THAT COLUMN. IF SUCH A 1 IS IN AN UNLABELLED ROW, THEN LABEL 
THAT ROW WITH THE NAME OF THE COLUMN BEING SCANNED. PUT THE LETTER "S" UNDER 
EACH COLUMN AFTER IT HAS BEEN SCANNED. } 
 
PROCEDURE Step2(VAR CStatus : ColArray; VAR RStatus: RowArray; 
                VAR LCStatus : boolean; Mat: MatArray); 
  VAR 
    I,J : integer; 
 
  BEGIN 
    LCStatus := True; 
    FOR I := 1 TO N DO 
      IF (CStatus[I].Labelled = True) AND (CStatus[I].Scanned = False) THEN 
        BEGIN 
          LCStatus := False; 
          FOR J := 1 TO M DO 
            IF (Mat[J,I].Value = '1') AND (Mat[J,I].Status <> '*') THEN 
              IF (RStatus[J].Labelled = False) THEN 
                BEGIN 
                  RStatus[J].Labelled := True; 
                  RStatus[J].IValue := I 
                END; 
          CStatus[I].Scanned := True 
        END 
  END; 
 
{SCANNING ROWS -  IF ALL LABELED ROWS HAVE BEEN SCANNED, THEN GOTO STEP4. 
IF SOME LABELED BUT UNSCANNED ROW CONTAINS NO STARRED 1, THEN GOTO STEP5 
ELSE FOR EACH ROW THAT IS LABELED BUT NOT SCANNED, LOOK FOR THE STARRED 1 IN THAT 
ROW. LABEL THE COLUMN CONTAINING THE STARRED 1 WITH THE NAME OF THE ROW BEING 
SCANNED. PUT THE LETTER "S" AFTER EACH ROW WHEN IT HAS BEEN SCANNED. 
GOTO STEP 2  } 
 
PROCEDURE Step3(VAR CStatus : ColArray; VAR RStatus: RowArray; 
                VAR LRStatus, Strred: boolean; VAR USRow: BoolRowArry; 
                    Mat: MatArray); 
  VAR 
    I,J         : integer; 
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    TempStarred : boolean; 
  BEGIN 
    LRStatus := True; 
    Strred := True; 
    FOR I := 1 TO M DO 
      IF (RStatus[I].Labelled = True) AND (RStatus[I].Scanned = False) THEN 
          BEGIN 
            LRStatus := False; 
            TempStarred := False; 
            FOR J := 1 TO N DO 
              IF (Mat[I,J].Value = '1') AND (Mat[I,J].Status = '*') THEN 
                TempStarred := True; 
            IF NOT TempStarred THEN 
              BEGIN 
                Strred := False; 
                USRow[I] := True; 
              END 
          END; 
      IF Strred THEN 
        BEGIN 
          FOR I := 1 TO M DO 
            IF (RStatus[I].Labelled = True) AND (RStatus[I].Scanned = False) THEN 
              BEGIN 
                FOR J := 1 TO N DO 
                  IF (Mat[I,J].Value = '1') AND (Mat[I,J].Status = '*') THEN 
                    BEGIN 
                      CStatus[J].Labelled := True; 
                      CStatus[J].IValue := I 
                    END; 
                RStatus[I].Scanned := True 
              END 
        END 
  END; 
 
{STEP4 NO IMPROVEMENT - STOP. THE GIVEN INDEPENDENT SET IS MAXIMAL.} 
 
PROCEDURE Step4; 
  BEGIN 
    writeln(output,'The given independent set is maximal.') 
  END; 
 
{STEP5 - BACKTRACKING - A LABELED ROW CONTAINS NO STARRED 1. CIRCLE THE 1 IN THIS 
ROW AND IN THE COLUMN THAT THE ROW IS LABELED WITH. CIRCLE THE STARRED 1 IN THIS 
COLUMN AND THE ROW THAT THIS COLUMN IS LABELED WITH. CONTINUE IN THIS WAY UNTIL A 
1 IS CIRCLED IN A COLUMN LABELED WITH THE LETTER "L"} 
 
PROCEDURE Step5(VAR Circ: BoolDim2; USRow: BoolRowArry; RStatus: RowArray; 
                    CStatus: ColArray); 
  VAR 
    I,J,K,R,C : integer; 
  BEGIN 
    FOR I := 1 TO M DO 
      IF USRow[I] THEN 
        BEGIN 
          K := I; 
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          REPEAT 
            J := K; 
            C := RStatus[J].IValue; 
            Circ[J,C] := True; 
            R := CStatus[RStatus[J].IValue].IValue; 
            IF R <> 0 THEN 
              Circ[R,C] := True; 
            K := R; 
          UNTIL (CStatus[C].CValue = 'L') 
        END 
  END; 
 
{STEP6 LARGER INDEPENDENT SET - REVERSE THE STARS ON ALL CIRCLED 1'S 
THIS GIVES AN INDEPENDENT SET OF 1'S WITH ONE MORE ELEMENT THATN THE 
ORIGINAL SET.} 
 
PROCEDURE Step6(VAR Mat: MatArray; Circ: BoolDim2); 
  VAR 
    I, J : integer; 
  BEGIN 
    FOR I := 1 TO M DO 
      FOR J := 1 TO N DO 
        IF Circ[I,J] = True THEN 
          IF Mat[I,J].Status = '*' THEN 
            Mat[I,J].Status := ' ' 
          ELSE 
            Mat[I,J].Status := '*' 
  END; 
 
PROCEDURE Output1(Mat: MatArray); 
  VAR 
    I, J : integer; 
 
  BEGIN 
 
    FOR I := 1 TO M DO 
      BEGIN 
        FOR J := 1 TO N-1 DO 
          write(output,Mat[I,J].Value:1, Mat[I,J].Status:1, ' '); 
          writeln(output); 
        writeln(output,Mat[I,N].Value:1, Mat[I,N].Status:1) 
      END 
  END; 
 
BEGIN {MAIN PROGRAM STARTS HERE} 
  assign(Infile, 'KINGS.INP'); 
  reset(Infile); 
  writeln; writeln; 
  GetInput(Matrix); 
  assign(output, 'KINGS.OUT'); 
  rewrite(output); 
  writeln(output); writeln(output); 
  writeln(output,'The initial matrix set is: '); 
  Output1(Matrix); 
  Initialize(Circle,ColStatus,RowStatus,UnstarredRow); 
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  Step1(ColStatus, Matrix); 
  LabColStatus := False; 
  LabRowStatus := False; 
  Continue := True; 
  WHILE Continue DO 
    BEGIN 
      Step2(ColStatus, RowStatus, LabColStatus, Matrix); 
      IF LabColStatus THEN 
        Continue := False 
      ELSE 
        BEGIN 
          Step3(ColStatus,RowStatus,LabRowStatus,Starred,UnstarredRow,Matrix); 
          IF (LabRowStatus) OR (NOT Starred) THEN 
            Continue := False 
        END 
    END; 
  IF NOT Starred THEN 
    BEGIN 
      Step5(Circle,UnstarredRow,RowStatus,ColStatus); 
      Step6(Matrix,Circle); 
      writeln(output); writeln(output); 
      writeln(output,'The larger independent set is: '); 
      writeln(output); 
      writeln(output); 
      Output1(Matrix); 
    END; 
  IF LabColStatus OR LabRowStatus THEN 
    Step4; 
  close(Infile); 
  close(output) 
END. 
 
The output produced from the above program when our original matrix was entered as input is given below; 

 Al Ol Ob Ab Ek Am Im  Nw Uk 
211 0 1 0 1* 0 0 0 1 1 
212 1* 0 1 0 1 0 0 0 1 
222 0 0 0 0 0 1* 1 0 0 
312 0 0 0 0 1* 1 0 0 1 
322 0 1 0 0 0 0 0 0 1* 
422 0 1* 0 0 0 0 0 0 0 

 
From the result matrix above, we observed that the course allocations on execution of the source codes were; 
CSC211: Ab 
CSC212: Al 
CSC222: Am 
CSC312: Ek 
CSC322: Uk 
CSC422: Ol 
We could then proceed to apply the matrix to other subject areas in order to produce an independent set for each 
area, but the condition that no Lecturer is involved in more than two courses per semester still holds. 
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2.0 Conclusion 
 

As could be seen from our case study, the MIS algorithm can be applied to a variety of tasks which 
involves scheduling and planning. Our modified version of the algorithm was applied to course scheduling and 
course allocation in an academic environment. Its overall advantages amongst others were that; it made the task of 
allocation of courses faster, easier and convenient and more importantly, it ensures that no lecturer is allocated more 
than the maximum number of courses to be allocated i.e. if the maximum number of courses already agreed to be 
allocated per semester or term is 2 to any lecturer, the algorithm ensures that such rule is not violated. 

We equally developed a source code in Turbo Pascal which, apart from being fast and efficient, could 
handle extremely larger input lists like allocation of courses to lecturers in a Faculty, a Polytechnic, a Secondary or 
High School, or even a University. Another noticeable advantage of the source code is that, it is impartial and can 
handle more-complex cases. We do hope that more research work would be carried out on other application areas of 
the maximal independent set algorithm. 
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