An application of the maximal independent set algorithm to course allocation

*V. V. N. Akwukwuma and K. C. Ukaoha, Department of Computer Science, University of Benin, Benin City.
*e-mail: vakwukwuma@yahoo.com

Abstract

In this paper, we demonstrated one of the many applications of the Maximal Independent Set Algorithm in the area of course allocation. A program was developed in Pascal and used in implementing a modified version of the algorithm to assign teaching courses to available lecturers in any academic environment and it proved to be very effective.

Abstract

Keywords: maximal independent sets, graphs, course allocation, bipartite graphs.

1.0 Introduction

A graph is fundamentally a combinatorial object. That is, a set of points (or vertices) and a particular set of connecting lines (or edges) out of all possible sets of such lines. A directed graph is a finite nonempty set V and a set E of ordered pairs of distinct elements of V; the elements of V are called vertices and the elements of E are called directed edges. A bipartite graph is a graph in which the vertices can be divided into two disjoint nonempty sets A and B such that no two vertices in A are adjacent and no two vertices in B are adjacent. An independent set of a graph G is a subset of the vertices such that no two vertices in the subset are connected by an edge of G. That is, an independent set is a set of mutually non-adjacent vertices Halldorsson (2000). A Maximal Independent Set (MIS) in an undirected graph is a maximal collection of vertices I subject to the restriction that no pair of vertices in I are adjacent Luby (1985). Graphs are applied in a variety of simple, to complicated tasks and various studies have been carried out on their applications Ahuja et al (1993), Halperin (2000), Israeli (1984), Lev (1980) and Miller et al (2001). The MIS algorithm was proposed by Ford and Fulkerson (1962) and could be applied without any complications to bipartite graphs.
In this paper, we slightly modified the MIS algorithm and subsequently applied it to the allocation of teaching courses to available lecturers in an academic setting. The original MIS algorithm could not place a limit as to the number of courses a lecturer could teach while the modified version of the MIS algorithm places a limit to the number of courses which can be taught by any lecturer. We coded the modified version of the MIS algorithm Turbo Pascal which when executed, was faster, more efficient and more reliable than the traditional manual method of allocating courses in academic environments.

2.0 The Algorithm

Let G be a graph with vertices V and edges E. by a matching of G, we mean a subset M of E such that no vertex in V is incident with more than one edge in M . By a maximal matching of G , we mean a matching of G so that no other matching of G contains more edges. We say a graph with vertex set V and edge set E is bipartite in case V, E can be written as the union of two disjoint sets V_{1} and V_{2} such that each edge joins an element of V_{1} with an element of V_{2}. By a covering C of a graph, we mean a set of vertices such that every edge is incident to at least one vertex in C . We say C is a minimal covering if no covering of the graph has fewer vertices.
The MIS algorithm is set out as follows;
:: Matrix representation of bipartite graph.
Given: an independent set of 1 's in a matrix of 0 's and 1 's,

Begin:

 could do the problem in less than one second.

3.0 Application

In any academic environment, teaching courses are assigned to the available teaching staff based on their area of specialization or subject area. Since the available courses are equally grouped the same way as the subject areas of the lecturers; our MIS algorithm is applied as follows;
i. Select a particular subject area and bring out the list of lecturers available in that area
ii. For any match in the subjects and the lecturers, enter a ' 1 ' and a ' 0 ' otherwise
iii. Apply the MIS algorithm to get the appropriate matching
iv. Move over to another subject area and again apply the algorithm provided no lecturer is assigned more than two courses per semester
iv. Continue applying the algorithm until all the courses have been allocated.
v. Stop

In one of the areas of specialization, PROGRAMMING LANGUAGES, we have the courses listed and a corresponding list of lecturers that can teach some of these courses as follows;

LIST OF COURSES

CSC212 Symbolic Programming in FORTRAN
CSC211 Programming in Pascal
CSC222 Assembly Language Programming
CSC312 Advanced Assembly Language and C++ Programming
CSC322 Data Structures
CSC422 Concepts of Programming Languages

LIST OF LECTURERS THAT CAN TEACH SOME OF THESE COURSES;

Al	CSC212
Ol	CSC211, CSC322 and CSC422
Ob	CSC212
Ab	CSC211
Ek	CSC212 and CSC312
Am	CSC222 and CSC312
Im	CSC222
Nw	CSC211
Uk	CSC211, CSC212, CSC312 and CSC322

Arranging the courses (using their numeric codes) side by side with the lecturers that can teach each course gives us the following bipartite graph;

By entering a ' 1 ' against any corresponding lecturer and course and a ' 0 ' otherwise, we have the following matrix representation of the graph;

	Al	Ol	Ob	Ab	Ek	Am	Im	Nw	Uk
$\mathbf{2 1 1}$	0	1	0	1	0	0	0	1	1
$\mathbf{2 1 2}$	1	0	1	0	1	0	0	0	1
$\mathbf{2 2 2}$	0	0	0	0	0	1	1	0	0
$\mathbf{3 1 2}$	0	0	0	0	1	1	0	0	1
$\mathbf{3 2 2}$	0	1	0	0	0	0	0	0	1
$\mathbf{4 2 2}$	0	1	0	0	0	0	0	0	0

The row headers are used to denote the courses to be taught while the columns header denote the available lecturers that will teach a course, after which we place an asterisk or star on the first available ' 1 ' on each column, provided such a ' 1 ' is the only one starred on each column and row where it appears. This gives us the following;

	$\mathbf{A l}$	Ol	Ob	Ab	Ek	Am	Im	Nw	Uk	
$\mathbf{2 1 1}$	0	1^{*}	0	1	0	0	0	1	1	
$\mathbf{2 1 2}$	1^{*}	0	1	0	1	0	0	0	1	
$\mathbf{2 2 2}$	0	0	0	0	0	1^{*}	1	0	0	
$\mathbf{3 1 2}$	0	0	0	0	1^{*}	1	0	0	1	
$\mathbf{3 2 2}$	0	1	0	0	0	0	0	0	1^{*}	
$\mathbf{4 2 2}$	0	1	0	0	0	0	0	0	0	
			L	L			L	L		

The following source code was developed in Turbo Pascal to handle the maximal independent set operation and the above matrix was entered as input.

\{MAXIMAL INDEPENDENT SET ALGORITHM\}

```
PROGRAM Algol(input, output, Infile);
CONST
    RowSize = 50;
    ColSize = 50;
```

TYPE
ElementType = RECORD
Value : char;
Status : char;
END;
RCStatus $=$ RECORD
Labelled : boolean;
IValue : integer;
CValue : char;
Scanned : boolean;
END;
BoolRowArry = ARRAY [1 .. RowSize] OF boolean;
MatArray = ARRAY [1 .. RowSize, 1 .. ColSize] OF ElementType;
BoolDim2 = ARRAY [1 .. RowSize, 1 .. ColSize] OF boolean;
ColArray = ARRAY [1 .. ColSize] OF RCStatus;
RowArray = ARRAY [1 .. RowSize] OF RCStatus;
VAR

Matrix	: MatArray;
Circle	BoolDim2;
ColStatus	: ColArray;
RowStatus	: RowArray;
UnstarredRow	: BoolRowArry;
Starred, LabColStatus,	
LabRowStatus, Continue : boolean;	
M, N	$:$ integer;
Infile, output	$:$ text;

\{THIS PROCEDURE READS THE ARRAY ELEMENTS \}

PROCEDURE GetInput(VAR Mat: MatArray);
VAR
I, J : integer;
Ch : char;
BEGIN
write('Enter the number of rows: ');
readln(M);
write('Enter the number of columns: ');
readln(N);
FOR I := 1 TO M DO
BEGIN
FOR J := 1 TO N DO
BEGIN
WITH Mat[I,J] DO
read(Infile, Value, Status);
read(Infile, Ch)
END;
readln(Infile, Ch)
END;
END;

PROCEDURE Initialize(VAR Circ: BoolDim2; VAR CStatus: ColArray;
VAR RStatus: RowArray; VAR USRow: BoolRowArry);
VAR
I,J : integer;
BEGIN
FOR I := 1 TO M DO
FOR J := 1 TO N DO
Circ $[\mathrm{i}, \mathrm{j}]:=$ False;
FOR J := 1 TO N DO
WITH CStatus[J] DO
BEGIN
Labelled := False;
IValue := 0;
CValue := ' ';
Scanned := False
END;
FOR I := 1 TO M DO
WITH RStatus[I] DO BEGIN
Labelled := False;
IValue := 0;
CValue := ' ';
Scanned := False
END;
FOR I := 1 TO M DO
USRow[i] := False;
Starred := False
END;
\{STEP1 LABEL WITH AN "L" ALL COLUMNS CONTAINING NO STARRED 1 \}
PROCEDURE Step1(VAR CStatus: ColArray; Mat: MatArray);
VAR
I,J : integer;
LStatus : boolean;
BEGIN
FOR I := 1 TO N DO

```
        BEGIN
    LStatus := True;
    FOR J := 1 TO M DO
    IF (Mat[J,I].Value = '1') AND (Mat[J,I].Status = '*') THEN
        LStatus := False;
    IF LStatus THEN
        BEGIN
        CStatus[I].Labelled := True;
        CStatus[I].CValue := 'L'
    END
ELSE
    CStatus[I].Labelled := False
    END
END;
```

\{STEP2: SCANNING COLUMNS - IF ALL LABELED COLUMNS HAVE BEEN SCANNED,
THEN GOTO STEP4 ELSE, FOR EACH COLUMN THAT IS LABELED BUT NOT SCANNED LOOK AT
ANY UNSTARRED 1'S IN THAT COLUMN. IF SUCH A 1 IS IN AN UNLABELLED ROW, THEN LABEL
THAT ROW WITH THE NAME OF THE COLUMN BEING SCANNED. PUT THE LETTER "S" UNDER
EACH COLUMN AFTER IT HAS BEEN SCANNED. \}
PROCEDURE Step2(VAR CStatus : ColArray; VAR RStatus: RowArray;
VAR LCStatus : boolean; Mat: MatArray);
VAR
I,J : integer;
BEGIN
LCStatus := True;
FOR I := 1 TO N DO
IF (CStatus[I].Labelled = True) AND (CStatus[I].Scanned = False) THEN
BEGIN
LCStatus := False;
FOR J := 1 TO M DO
IF (Mat[J,I].Value = '1') AND (Mat[J,I].Status <> '*') THEN
IF (RStatus[J].Labelled = False) THEN
BEGIN
RStatus[J].Labelled := True;
RStatus[J].IValue := I
END;
CStatus[I].Scanned := True
END
END;
\{SCANNING ROWS - IF ALL LABELED ROWS HAVE BEEN SCANNED, THEN GOTO STEP4. IF SOME LABELED BUT UNSCANNED ROW CONTAINS NO STARRED 1, THEN GOTO STEP5 ELSE FOR EACH ROW THAT IS LABELED BUT NOT SCANNED, LOOK FOR THE STARRED 1 IN THAT ROW. LABEL THE COLUMN CONTAINING THE STARRED 1 WITH THE NAME OF THE ROW BEING SCANNED. PUT THE LETTER "S" AFTER EACH ROW WHEN IT HAS BEEN SCANNED. GOTO STEP 2 \}

```
PROCEDURE Step3(VAR CStatus : ColArray; VAR RStatus: RowArray;
            VAR LRStatus, Strred: boolean; VAR USRow: BoolRowArry;
        Mat: MatArray);
VAR
    I,J : integer;
```

```
    TempStarred : boolean;
BEGIN
    LRStatus := True;
    Strred := True;
    FOR I := 1 TO M DO
    IF (RStatus[I].Labelled = True) AND (RStatus[I].Scanned = False) THEN
        BEGIN
            LRStatus := False;
            TempStarred := False;
            FOR J := 1 TO N DO
            IF (Mat[I,J].Value = '1') AND (Mat[I,J].Status = '*') THEN
                    TempStarred := True;
            IF NOT TempStarred THEN
                BEGIN
                    Strred := False;
                USRow[I] := True;
            END
        END;
    IF Strred THEN
        BEGIN
        FOR I := 1 TO M DO
            IF (RStatus[I].Labelled = True) AND (RStatus[I].Scanned = False) THEN
                BEGIN
                    FOR J := 1 TO N DO
                IF (Mat[I,J].Value = '1') AND (Mat[I,J].Status = '*') THEN
                        BEGIN
                        CStatus[J].Labelled := True;
                        CStatus[J].IV Value := I
                    END;
            RStatus[I].Scanned := True
            END
        END
END;
```

\{STEP4 NO IMPROVEMENT - STOP. THE GIVEN INDEPENDENT SET IS MAXIMAL.\}
PROCEDURE Step4;
BEGIN
writeln(output,'The given independent set is maximal.')
END;
\{STEP5 - BACKTRACKING - A LABELED ROW CONTAINS NO STARRED 1. CIRCLE THE 1 IN THIS
ROW AND IN THE COLUMN THAT THE ROW IS LABELED WITH. CIRCLE THE STARRED 1 IN THIS
COLUMN AND THE ROW THAT THIS COLUMN IS LABELED WITH. CONTINUE IN THIS WAY UNTIL A
1 IS CIRCLED IN A COLUMN LABELED WITH THE LETTER "L"\}
PROCEDURE Step5(VAR Circ: BoolDim2; USRow: BoolRowArry; RStatus: RowArray;
CStatus: ColArray);
VAR
I,J,K,R,C : integer;
BEGIN
FOR I := 1 TO M DO
IF USRow[I] THEN
BEGIN
K := I;

```
    REPEAT
    J := K;
    C := RStatus[J].IValue;
    Circ[J,C] := True;
    R := CStatus[RStatus[J].IV alue].IValue;
    IF R <> 0 THEN
    Circ[R,C] := True;
    K := R;
    UNTIL (CStatus[C].CValue = 'L')
    END
END;
\{ STEP6 LARGER INDEPENDENT SET - REVERSE THE STARS ON ALL CIRCLED 1'S THIS GIVES AN INDEPENDENT SET OF 1'S WITH ONE MORE ELEMENT THATN THE ORIGINAL SET.\}
PROCEDURE Step6(VAR Mat: MatArray; Circ: BoolDim2);
VAR
I, J : integer;
BEGIN
FOR I \(:=1\) TO M DO
FOR J := 1 TO N DO
IF Circ[I, J] = True THEN
IF Mat[I,J].Status = '*' THEN
Mat[I,J].Status := ' '
ELSE
Mat[I,J].Status := '*'
END;
PROCEDURE Output1(Mat: MatArray);
VAR
I, J : integer;
BEGIN
FOR I := 1 TO M DO
BEGIN
FOR J := 1 TO N-1 DO
write(output,Mat[I,J].Value:1, Mat[I,J].Status:1, ' ');
writeln(output);
writeln(output,Mat[I,N].Value:1, Mat[I,N].Status:1)
END
END;
BEGIN \{MAIN PROGRAM STARTS HERE\}
assign(Infile, 'KINGS.INP');
reset(Infile);
writeln; writeln;
GetInput(Matrix);
assign(output, 'KINGS.OUT');
rewrite(output);
writeln(output); writeln(output);
writeln(output,'The initial matrix set is: ');
Output1(Matrix);
Initialize(Circle,ColStatus,RowStatus,UnstarredRow);
```

```
Step1(ColStatus, Matrix);
LabColStatus := False;
LabRowStatus := False;
Continue := True;
WHILE Continue DO
    BEGIN
    Step2(ColStatus, RowStatus, LabColStatus, Matrix);
    IF LabColStatus THEN
        Continue := False
    ELSE
        BEGIN
            Step3(ColStatus,RowStatus,LabRowStatus,Starred,UnstarredRow,Matrix);
            IF (LabRowStatus) OR (NOT Starred) THEN
            Continue := False
        END
    END;
IF NOT Starred THEN
    BEGIN
    Step5(Circle,UnstarredRow,RowStatus,ColStatus);
    Step6(Matrix,Circle);
    writeln(output); writeln(output);
    writeln(output,'The larger independent set is: ');
    writeln(output);
    writeln(output);
    Output1(Matrix);
    END;
    IF LabColStatus OR LabRowStatus THEN
    Step4;
    close(Infile);
    close(output)
END.
```

The output produced from the above program when our original matrix was entered as input is given below;

	$\mathbf{A l}$	Ol	$\mathbf{O b}$	$\mathbf{A b}$	$\mathbf{E k}$	Am	Im	Nw	$\mathbf{U k}$
$\mathbf{2 1 1}$	0	1	0	1^{*}	0	0	0	1	1
$\mathbf{2 1 2}$	1^{*}	0	1	0	1	0	0	0	1
$\mathbf{2 2 2}$	0	0	0	0	0	1^{*}	1	0	0
$\mathbf{3 1 2}$	0	0	0	0	1^{*}	1	0	0	1
$\mathbf{3 2 2}$	0	1	0	0	0	0	0	0	1^{*}
$\mathbf{4 2 2}$	0	1^{*}	0	0	0	0	0	0	0

From the result matrix above, we observed that the course allocations on execution of the source codes were;

CSC211:	Ab
CSC212:	Al
CSC222:	Am
CSC312:	Ek
CSC322:	Uk
CSC422:	Ol

We could then proceed to apply the matrix to other subject areas in order to produce an independent set for each area, but the condition that no Lecturer is involved in more than two courses per semester still holds.

2.0 Conclusion

As could be seen from our case study, the MIS algorithm can be applied to a variety of tasks which involves scheduling and planning. Our modified version of the algorithm was applied to course scheduling and course allocation in an academic environment. Its overall advantages amongst others were that; it made the task of allocation of courses faster, easier and convenient and more importantly, it ensures that no lecturer is allocated more than the maximum number of courses to be allocated i.e. if the maximum number of courses already agreed to be allocated per semester or term is 2 to any lecturer, the algorithm ensures that such rule is not violated.

We equally developed a source code in Turbo Pascal which, apart from being fast and efficient, could handle extremely larger input lists like allocation of courses to lecturers in a Faculty, a Polytechnic, a Secondary or High School, or even a University. Another noticeable advantage of the source code is that, it is impartial and can handle more-complex cases. We do hope that more research work would be carried out on other application areas of the maximal independent set algorithm.

References

[1] Ahuja, R.K., Magnanti, T.L. and Orlin, J.B. (1993). Network Flows: Theory, Algorithms and Applications. Prentice Hall, Englewood Cliffs, NJ.
[2] Dossey, J.A., Oho, A.D., Spence, L.E. and Eynden, C.V. (1987). Discrete Mathematics. Scott Foresman and Company, Illinois.
[3] Ford, L.R. and Fulkerson, D.R. (1962). Flows in Networks. University Press, Princeton, NJ.
[4] Halldorsson, M.M. (2000). Approximations of Weighted Independent Set and Hereditary Subset Problems. Journal of Graph Algorithms and Applications, vol.4, no.1, pp.1-16.
[5] Halperin, E. (2000). Improved Approximation Algorithm for the Vertex Cover Problem in Graphs and Hypergraphs. In Proc. Eleventh ACM-SIAM Symp. On Discrete Algorithms, pp. 329-337.
[6] Israeli, A. and Shiloach, Y. (1984). An Improved Maximal Matching Parallel Algorithm. Tech. Rep. 333, Computer Science Department, Technion, Haifa, Israel.
[7] Lev, G. (1980). Size Bounds and Parallel Algorithms for Networks. Report CSCT-8-80, Department of Computer Science, University of Edinburgh.
[8] Luby, M. (1985). Simple Parallel Algorithm for the Maximal Independent Set Problem. Journal of ACM.
[9] Miller, H.J. and Shaw, S.L. (2001). Geographic Information Systems for Transportation: Principles and Applications. Oxford University Press, Oxford.
[10] Karp, R.M. and Widgerson, A. (1984). A Fast parallel Algorithm for the Maximal Independent Set Problem. Proceedings of $16^{\text {th }}$ ACM STOC, pp. 266-272

