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In this paper we present the binding energy of 16O together with single-particle 
energies in the oxygen region by folding together a Hamiltonian in the rest-
frame of the nucleus with two-body correlation functions based on the 
Njimegen potential.  We have found that the binding energies are very 
sensitive to the core radius rc and that the effects of tensor correlations are 
non-negligible.  Our calculated binding energy, EB= - 127.6MeV with rc = 
0.241 fm compares well with the experimental binding energy, EB = - 
127.6MeV. 
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1.0  Introduction 
 The study of nuclear properties from the fundamental nucleon-nucleon interaction has offered a 
formidable challenge to researchers over the years.  One example of such a challenge has been the 
calculation of effective interactions as input to the shell model or to the optical model.  The calculation of 
effective interactions for the shell model starts from a suitable one- and two-body effective interactions 
and the approach usually is to consider all (or some) of the two-body matrix elements of the effective 
two-body interaction as free parameters to be adjusted empirically to fit experimental results [1].  The 
one-body effective interactions denoting the single-particle energies are usually chosen from the 
experimental spectrum e.g. of 17O with respect to the core of 16O. 
 For the calculation of these quantities no shell model calculation has so far done a satisfactory job 
of using quantities defined from just one procedure.  In most cases, either one chooses the single-particle 
energies from experiment while the two-body effective interaction is chosen from theory or a combination 
of a semi-empirical approach where all the above theoretical quantities are adjusted to fit experimental 
data.  Over the years, most researchers have paid more attention to the derivation of the two-body 
quantities while the one-body part (the single-particle energies) have usually been extracted from 
experiment as discussed above thereby lacking in good theoretical understanding.  
 It is the belief of the present authors that if one wishes to gain a complete understanding of a 
quantum many-body system such as the nucleus, then one should seek to understand all the above 
quantities from a microscopic theory before going over to other correction such as the inclusion of three-
or four-body forces.  Recently, we have shown [2] that the single-particle energies could indeed be 
calculated quite accurately from the fundamental nucleon-nucleon force based on the method of lowest 
order constrained variational (LOCV) approach.  However, the two-body nucleon-nucleon interaction 
used in that work was the Reid [3] potential which is rather old as its derivation was based on old and 
erroneous phase shifts data [4].  Thus, calculations based on the Reid [3] potential should be updated to 
take into account more accurate phase shifts data in the various partial wave components, hence the need 
to update our earlier calculation reported in Ref. [2]. The present paper is divided as follows: in Section 2 
we give a summary of the method of how we defined our two-body effective interaction for the shell 
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model and then give expressions for evaluating the single-particle energies and binding energies.  In 
Section 3 the results of the binding energy and the single-particle energies have been given.  Section 4 
deals with summary and conclusion of the paper.  
 
2.0 Definition of the Nuclear Effective Interaction 
 In the formulation of the nuclear effective interactions, there are usually two steps to undertake: 
the first step is to write the Hamiltonian in the rest-frame of the nucleus as [5]:   
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where the relative  momentum of the two-particle system is defined by ( )jiij ppp −
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Am is the total mass of the nucleus while ijV is the Nijgement potential [4].  The next step is to define an 

effective two-body Hamiltonian in the form [6,7] 
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where the ( )ijf k
2  are the two-body correlation operators and k is a summation over all the reaction 

channels. 
 Previous studies regarding nuclear matter [6,7] and finite nuclei [5,8] have indicated three main 
features for two-body correlation functions: They can be summarised as: (a) the tensor correlations and, 
(b) the ‘wound’ induced in the two-body wave function by the repulsive core of the N - N interaction, and 
(c) the meson-exchange corrections.  It was however found that the most important of these features was 
the tensor correlations.  Therefore our two-body correlation functions have been parameterised as [8, 2]: 
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where fmrc 250 ⋅=  and .25 2−= fmβ   The parameter, kα  defines the strength of the tensor 

corelations and is non-zero only in the 1
3

1
3 DS −  channel.  The ijS appearing in equation (2.5) stands for 

the usual tensor operator.  Following an earlier procedure, the binding   energy of a nucleus may be 

expressed as [9]:  ( )( ) ( ) ( )∑∑
≥

++=
ji JT
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where i, j are the core state orbitals whereas the angular momentum J and isospin T are formed by the 

vector coupling of states i and j.  The quantity, ( ) ( )
AS

JTijhJTij  is obtained from the general 

expression for evaluating two-body matrix elements as [2, 10]:  
 



Journal of the Nigerian Association of Mathematical Physics, Volume 9 (November 2005) 
Single-particle energies in the 160 region J. O. Fiase, L. K. Sharma and F. Gbaorun  J. of NAMP 

( ) ( )
( )( )

( )

( ){ } ( ) ( ) TgslnhTglsn
LJ

gsl

LJ

gsl
g

lnlnNLlnlnlnNLnls

X

Jjj

s

ll

Jjj

s

ll
jjjj

JTcdhJTab

g

Tsl

NLln
ddccbbaa

ll

dc

dc

s
ba

ba

cdab

dcba
AS

;;ˆ11

;,;,,,;,1ˆˆˆ

11

ˆˆˆˆ

2

nl

222

2
1

2
1

,,
2
1

2
1

′′








′
′









−−

′′′−′















 ′

















++
=

∑

∑

∑

++

′′

′+++

′

λλ

λλλλλλ

λλ

δδ

λλ

λλ

 (2.5) 

 

In equation (2.5) two particles in the orbits a and b with single-particle quantum numbers, ( ) aaa jln
2
1,  

and ( ) ,,
2
1

bbb jln  respectively couple their spins to the total angular momentum J and isospin T.  The 

given quantity 
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is a 6 - j symbol.  On the other hand, the single-particle energies were derived as [2]:  

  
( )( )

( ) ( )( ) ( ) ( )
AS

iTJ
j JTijhJTijTJ

j

TJ
∑ ++

+
++= 1212

122

1212ε   (2.6) 

The matrix elements of equations (2.4) and (2.6) were evaluated in a harmonic oscillator basis.  Only two 

free parameters are present, (a) the oscillator size parameters, b = )/)(( hωm  contained in the harmonic 

oscillator wave function and, (b) the strength of the tensor correlation αk. 
 
3.0 Results of binding energy and single-particle energies 
 Table 3.1 shows our calculated binding energy for 16O as a function of the core radius rc for αk = 
0.06 and ћω = 14.0 MeV suitable for the A = 16 system.  By choosing the various values of the core radius 

cr , we found that we could only reproduce the binding of 16O if rc was equal to 0.241fm, giving us the 

calculated binding energy of –127.8 MeV.  Higher values of rc gave us too much binding and lower values 
of rc gave us under binding.  From this analysis it is clear that a suitable core radius rc, must be found 
while using potentials of the Reid – type such as the Nijgemen potential [4] in LOCV calculations.  In our 
earlier calculations with the Reid [3] potential, we had used rc = 0.25 fm which as can be seen is very 
close to the value used in the present calculation.  

Table 3.1 
Calculated binding energy BE (in MeV) of 16O as a function of the core radius rc. 

Calculation parameters are: αk = 0.06, Ћω = 14.0 MeV. 
 

rc (fm) 0.05 0.10 0.15 0.20 0.24 0.241 0.25 0.30 0.35 0.40 0.45 0.50 
BE 
(MeV) 

 
5.79 

 
-31.1 

 
-68.72 

 
-103.29 

 
-127.25 

 
-127.80 

 
-132.61 

 
-155.13 

 
-169.96 

 
-176.79 

 
-175.81 

 
-167.59 

Indeed, similar results on the binding energy of 16O could be found for other values of α
k lying in 

the range 0.05 < αk ≤ 0.08 corresponding to our earlier range in previous investigations [6].  We have 
however chosen the above representative sample because the rc that reproduced the binding energy of 16O 
is similar to that used in our earlier calculations which makes it easier to compare results.  We expect the 
choice of the optimized values of rc and αk to depend on the details of the nucleon-nucleon potential used 
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and the constraints imposed on the convergence parameter, k, used in judging the convergence of the 
cluster expansion.  For these reasons we shall await a further investigation of the above points raised 
which involve the inclusion of other nucleon-nucleon potentials and a study on the convergence criteria of 
the cluster expansion, hence we can consider the parameters used in the present study as preliminary.  

Having optimized our preliminary parameters by reproducing the binding energy of 16O with the above 
procedure, we now present the results of the single-particle energies in the oxygen region by using equation (2.6) 
following our earlier procedure found in Ref. [2].  We used the same parameters as those described above for the 
binding energy of 16O.   It should be noted that the sum, i in equation (2.6) is over all the diagonal matrix elements 
and as observed earlier by Irvine and co-workers [11], there is an ambiguity in fitting the two-body diagonal matrix 
elements.  This means that the calculated single-particle energies and two-body energies could differ from their 
experimental counterparts only by a constant shift.  

In Table 3.2 we apply a constant shift of –∆ (MeV) to all the single-particle energies in the form:  

   
)(expt

jjj εεε ≈∆±=′     (3.1) 

 
Here also we find like in our earlier paper [2] that a constant shift  of ∆ = -17.3 MeV applied to all the single-particle 

energies, jε  can bring all the calculated single-particle energies close to their experimental counterparts also listed 

in Table 3.2.  This analysis confirms our earlier calculations.  The determination of ∆ from a theoretical approach is 
still an open challenge.  Note that in Table 3.2, the d-shell spin-orbit splitting and the sd-shell splitting were 
calculated directly from the calculated 

Table 3.2 
Calculated single-particle energies, d-shell spin-orbit splitting, and the sd-shell splitting for 16O for 

α
k = 0.06, ωЋ =  14.0 MeV. 

 
 ( )Mev∆

 
2/30dε ′  2/11sε ′

 

2/50dε ′
 

2/502/30 dd εε −  2/502/11 ds εε −  

Present  -17.3 0.84 -3.17 -4.14 5.66 1.64 
Expt. [12] - 0.95 -3.27 -4.82 5.09 0.87 
Ref. [12] - 2.555 -3.017 -3.238 5.793 0.221 

single-particle energies, jε .  It should however be noted that a shift to all the single-particle energies such as it 

made here will not affect the spectroscopy of nuclei under question but will only affect the relative binding 
energies of the different isobaric states.  

 

4.0 Summary and Conclusion 
In this paper we have calculated the binding energy of 16O by folding together a Hamiltonian in the rest – 

frame of the nucleus based on two-body correlation functions which take into account the short-range repulsion and 
the tensor component in the Nijgemen potential.  By choosing αk = 0.06, ωЋ = 14.0 MeV and rc = 0.241 fm we 
obtained the calculated binding energy of 16O as, EB = -127.8 MeV which is in excellent agreement with the 
experimental binding energy of EB = -127.6 MeV.  

Having optimized our parameters with the above calculations, we next calculated the single-particle 
energies in the oxygen region which are shown in Table 2.  The results show that our single-particle energies are in a 
reasonably good agreement with their experimental counterparts if we make a constant shift of –17.3 MeV to all the 
single-particle energies. These results should also be compared with the theoretical attempt on single-particle 
energies made by Maglione and Ferreira using the G-matrix approach [12].  As remarked earlier, the choice of the 
parameters αk and rc may depend on the details of the nucleon – nucleon potential used and the constraints imposed 
on the convergence parameter, k, used in judging the convergence of the cluster expansion.  Thus, while still 
awaiting further analyses on constraints on these parameters, our present results seem very promising.  

It will therefore be interesting to see the results of shell-model calculations obtained with the single-particle 
energies derived in this procedure together with the corresponding two-body matrix elements.  In this way, structure 
of nuclei could be understood in a fully microscopic procedure.  We hope to carry out further research in that 
direction.  
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