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Abstract 
 

In this paper, we investigate the thermal ignition in a strongly 
exothermic reaction of a variable viscosity combustible material 
flowing through a channel with isothermal walls under Arrhenius 
kinetics, neglecting the consumption of the material. Analytical 
solutions are constructed for the governing nonlinear boundary-value 
problem using perturbation technique together with a special type of 
Hermite-Padé approximants and important properties of the 
temperature field including bifurcations and thermal criticality are 
discussed 
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1.0 Introduction 
In petrochemical industries as well as petroleum refineries, the study of thermal ignition in a 

combustible reacting variable viscosity fluid is of great importance in order to ensure safety of life and 
properties ([3], [9]). Thermal ignitions occur when the reactions produce heat too rapidly for a stable 
balance between heat production and heat loss to be preserved. Hence, it is important to know the critical 
values of the basic physical quantities, such as the ambient temperature, surface characteristics, the 
chemistry of the reacting combustible material and the physical storage geometry at which ignition occur, 
([1], [2], [4], [7], [8]). The classical formulation of this type of problem was first introduced by Frank-
Kamenetskii ([4]). Neglecting the reactant consumption, the equation for the heat balance in the original 
variables together with the boundary conditions can be written as 
 
                                  u = 0,         T=T0 ,          y  = a    

               y  

                                                            Combustible fluid 

 
                       ay −=  

Figure 1: Geometry of the problem 
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u=0, T = T0,  on ay =      (1.1b) 

 

  0==
yd

ud

yd

dT
  on 0=y ,      (1.1c) 

where T is the absolute temperature, G the constant axial pressure gradient, T0 the wall reference 
temperature, k the thermal conductivity of the material, Q the heat of reaction, A the rate constant, E the 
activation energy, R the universal gas constant, C0 the initial concentration of the reactant species, a the 
channel characteristic half width, (x , y ) the distance measured in the axial and normal directions 
respectively. Following Makinde [5], we define the dynamic viscosity of the combustible material as  

   RT

E

e0µµ = ,      (1.2) 

where 0µ  is the combustible material reference viscosity.  The following dimensionless variables are 

introduced into equation (1.1): 
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and obtain the dimensionless governing equation together with the corresponding boundary conditions as 
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where λ ,ε,β, represent the Frank-Kamenetskii parameter, activation energy parameter and the viscous 
heating parameter respectively. In the following sections, equation (1.4) is solved using both perturbation 
and multivariate series summation techniques ([7], [8], [10], [12]). 
 
2.0 Perturbation method 
 To solve equation (1.4), it is convenient to take a power series expansion in the Frank-

Kamenetskii parameter λ, i.e. ∑
∞

=
=

0i

i
iλθθ . Substituting the solution series into equation (1.4) and 

collecting the coefficients of like powers of λ, we obtained and solved the equations governing the 
coefficients of solution series. The solution for the temperature and velocity fields are given as 
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Using computer symbolic algebra package (MAPLE), we obtained the first 30 terms of the above solution 
series (2.1) as well as the series for the lower wall heat transfer rate  

    ),,;1( βελθ == y
dy

d
Nu . 

 
3.0 Bifurcation study 

The main tool of this paper is a simple technique of series summation based on a special type of 
Hermite-Padé approximation technique and may be described as follows. Let us suppose that the partial 
sum 
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is given, we construct a multivariate series expression of the form 
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whereby, we substitute in equation (7) U(1) = U, U(2) = U2, U(3) = U3 for cubic algebraic approximant and 
U(1) = U, U(2) = DU, U(3) = D2U, D=d/dλ for second order differential approximant, such that 

 A0N(λ) = 1, ∑
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and 1≥d , i =1, 2, 3. The condition (3.3) normalizes the Fd , reduces the problem to a system of N linear 
equations for the unknown coefficients of Fd and ensures that the order of series AiN increases as i and d 
increase in value. We shall take N = 3(2 + d), so that the number of equations equals the number of 
unknowns. The algebraic approximant enables us to obtain the solution branches while the dominant 
singularity or criticality in the problem is obtained easily using the differential approximant.  

The critical exponent αN can easily be found by using Newton’s polygon algorithm. However, it 
is well known that, in the case of algebraic equations, the only singularities that are structurally stable are 
simple turning points. Hence, in practice, one almost invariably obtain αN =1/2. If we assume a 
singularity of algebraic type as in equation (7), then the exponent may be approximated by 
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For details on the above procedure, interested readers can see ([5], [6], [10], [11], [12]).  
 
4.0 Results and Discussion 
 The bifurcation procedure above is applied on the first 19 terms of the solution series and we 
obtained the results as shown in Tables 1 and 2. 
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Table 1: Computations Showing the Procedure Rapid Convergence for ε = 0.0, β=0.0 

 
d N Nu λc αcN 
1 9 2.00011662 0.878465558873 0.4999999 
2 12 2.00000000 0.878457679761 0.5000000 
3 15 2.00000000 0.878457679781 0.5000000 
4 18 2.00000000 0.878457679781 0.5000000 

 
Table 2: Computations Showing Thermal Ignition Criticality and Wall Heat Transfer for Various values of 

Parameter (β), ε = 0. 
 

ββββ Nu λλλλc ααααcN 

0 2.000000000 0.878457679 0.5000000 
1 2.250005680 0.769721022 0.5000000 
2 2.451073733 0.683568608 0.5000000 
3 2.615047090 0.613901674 0.5000000 

Table 1 shows the rapid convergence of the dominant singularity λc i.e. the thermal ignition criticality 
together with its corresponding critical exponent αc and wall heat transfer rate Nu with gradual increase in 
the number of series coefficients utilized in the approximants. Table 2 shows the magnitude of thermal 
ignition criticality for combustible material at very large activation energy (ε = 0).  It is interesting to note 
that a decrease in the thermal ignition criticality occurs due to addition of viscous heating, hence, thermal 
ignition will occur faster in the present of viscous heating. Figures 2 to 3 show both the temperature and 
the velocity profiles. The fluid temperature increases with an increase in the viscous heating parameter, 
the same is observed with fluid velocity profile. Two solution branches (type I and II) are identified with 
a bifurcation point at λc (i.e. turning point) as shown in a sketch of bifurcation diagram in Figure 3 below. 

 
Figure 2. Temperature profile for λ =1; ε=0; β = 0; ooooooooβ = 1; ++++++++β=2. 
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Figure 3. Velocity profile for λ =1; ε=0;________ β=0; ooooooooβ=1; ++++++++β=2. 
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Figure 4. A sketch of bifurcation diagram 
 
5.0 Conclusions 

The steady flow of reactive variable viscosity fluid in a channel with isothermal walls is 
investigated using perturbation series summation and improvement technique.  A bifurcation study by 
analytic continuation of a power series in the bifurcation parameter for a particular solution branch is 
performed. The procedure reveals accurately the steady state thermal ignition criticality conditions for as 
well as their dependent on viscous heating parameter. Finally, the above series summation procedure can 
be used as an effective tool to investigate several other parameter dependent nonlinear boundary-value 
problems.  
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