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Abstract

Hybrid plasma simulation is a model in which diffent components of the
plasma are treated differently. In this work therie are treated as particles
while the electrons are treated as a neutralizingdaground fluid through
which electric signals may propagate. Deuterium iti@ams incident on the
tritium plasma interact with the plasma through thevake electric and
magnetic fields of the beam currents. The modeldisscribed by the Vlasov-
Maxwell-fluid equations with displacement currentamitted in the Ampere’s
equation. Euler scheme advances the ion positiomsl aelocities while finite
difference scheme approximates the spatial derivasi of field quantities.
Bilinear interpolation is used in interpolating filel quantities from the grid
points to push particles in their respective posits. The beam parameters that
determine the response of the plasma are the beailooity \;, the density p
and the radius §. It was found that the sharpness of the characgtic
frequencies for power absorption increased with isasing beam density
while increasing the beam radius destroyed the deeristic frequencies and
spread the frequency band of the continuous lind$he Joule heating of the
plasma fluctuated in time and could be localizedcteasing ny delocalized the
heating. The magnetic field profile did not respondharply to beam
parameters but the respond was sufficient enoughcémuse inhomogeneity in
the direction of applied magnetic field B
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1.0 Introduction

Many schemes have been proposed for the heating of magnel@medapfor the controlled
thermonuclear reaction. The few most intensively researcheeines include the electron and ion
cyclotron resonance heating (using radio frequency weygesltra relativistic electron beam injection,
neutral beam injection, and Ohmic heating (Dovell and Gresillod 157 Thode 1976 [15], Breun and
Ferron 1979 [2]). The neutral beam injection method is collisiandlbecause of charge neutrality there
is a relative easy of beam penetration into the plasmarfTiesating can be treated at two levels. In one
level, one may neglect interaction between plasma particles thessel
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and consider only plasma-wave interaction. In this simplified ftverparticle evolution are not coupled
to the Maxwell field equations (Karny, 1978 [10]). In the second level, interactiongathe

plasma particles is allowed in addition to external waves. therebf the two approaches a complete
analytical treatment is difficult because of the non-lirtgain the particle evolution equation and the
complexity in the dielectric permittivity tensey which becomes a functional of the electric field and the
particle distribution function. But the power absorption by thenmaslue to trapped and untrapped
Landau damping is associated with the imaginary part of thetlaliigal component of while that due

to cyclotron resonance is associated with the imaginary gfarthe transverse component eof
(Kommoshvili et al. 2003 [11]). The way out of these difficultissto avoid the kinetic dielectric
permittivity tensor, and in its place use the cold plasma ifernty tensor (Grishanov et al. 2002 [9]).
The cold plasma approximation cannot explain the high frequency phenaesswated with rf heating
but it can explain Alfven heating based on mode conversion often callEd\bgen resonance (Elfimov
and Galvao 2002 [6]).

Computer simulation has become an alternative method of ciesding analytic difficulties in
getting insight into the plasma response to any proposed iiberad here is however a problem
associated with scale lengths in plasma simulation. The platoaons respond to high frequency
interactions while the ions to low frequencies. The heat aahbse electrons in high frequency
interaction is not available to the ions but it is the iorsd tlave to under go fusion. High frequency
simulation thus requires extraneous mechanism for downloadingjeétieon energy into the ions if the
aim is to heat the ions. To treat high frequency responseffites to assume that the ions are heavy
compared with electrons, and constitute fixed positive neutralizing lmackdfor the electrons.

In other to treat low frequency phenomena associated with the ions, wa caedul assumption
that will make us neglect the displacement currents (regperfsr high frequency phenomena) in the
Maxwell equations. This is known as Darwin approximation (Matthews 1994, Bagdanistiotschmann
2002 [1]). The electrons are treated as a fluid through whiclotise(particles) move. This is the basis of
hybrid simulation.

In this paper we considered a beam of deuterium ions (rathenthdral beams) injected into
magnetized tritium plasma. The experimental method by which suchrarbag be obtained is described
elsewhere (Thode 1976 [15], Toshitaka and Naoyoshi 1985 [16]. The ibeanm-relativistic so that
collisional mechanisms are not the method by which the bearadtdexith the plasma. Rather the beam
interacts with the plasma through the wake electric andhetagfields of the beam currents. The rest of
the paper is organized as follows: section 2 gives the tii@arand computational procedure; section 3
treats results and discussion while conclusion is in section 4.

2.0 Theory of the model and computational procedure

The hybrid plasma may be described by a combination of Vlasetikiequation, the system of
Maxwell equations, the fluid equation and Newton’s equation as @gknw (Fruchtman and Weitzner
1986 [8])

of q vx(B+B,, of
—+(vO)f+—(E+Ep+ ——F=)—=0 .
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[1B=0 (2.5)

neme—dt = —ngeE+J. x B-LJP (2.6)
Pe= ne kTe (2.7)
dX
—=V 2.8
at (2.8)
dv q
— =—|E+V xB 2.9
dt m ( ) (2:9)

Equation (2.1) is the Vlasov equation giving the total time devieaif the particle distribution f in phase
space described by the coordinates,). In the absence of collisions between particles the equation says
that the distribution function is constant along the charagtsrigiven by the Newton equations (2.8) and
(2.9). The electric fieldE and magnetic field® arising from particle motion or applied fields must satisfy
the Maxwell equations (2.2 — 2.5). Equation (2.6) is the momentum equation for thenefleid motion
while equation (2.7) gives the pressure exerted by the fluid. In egag@.1 — 2.9), the symbols not yet
defined as follows: g is ion charge, is the permeability of free spackjs total current density is
charge densityn, is electron number density s electron mass, v is the ion velocikyis Boltzmann
constant andP. is the electron pressure. We considered a non-relatidstiterium beam that is
Gaussian in both transverse coordinaigg.(The electricE, and magneti®, fields of the beam current
are given by

.2 2
B, = (1-¢" 207 (2.10)
2megr
2 2
B, = K09V (1 _g/2a%) (2.11)
2rr

wherer = (¢ + Y)"2v, = beam velocity and, is arbitrary (taken as fraction of scale length of the
system). We assumed the plasma is quasi-neutral, implyinghthédtal electron charge density is equal
to the ionic charge density, i.e.

ne= g (2.12)

where p; is ionic charge density. The displacement currents in the Arspkwe equation (2.3) is
neglected (Darwin approximation). By this assumption then® isxplicit time evolution for the electric
field. The electric field is determined by rearranging equation (2.2j2a6qto give

g= Ji*B (OxB)xB_ 5 (2.13)

Pi Hopi
where we have used the fact that the total cudénthe sum of the ionid and electronid, currents J.
= neu, u = electron fluid velocity), and that the electron fluid is ness (hencexmdu/dt = 0). The
magnetic field evolution equation (2.2) can thus be written as

o"B: DxJi><B_DX(D><B)><B

ot Pi HoPi
Finally, we assumed that the electron fluid pressure is uniforspace, thu§lP = 0 in equation (2.13)
and is omitted in equation (2.14). Equations (2.8 — 2.14) are the siohplifizid model equations. They
are all vector equations that have to be decomposed into compdremexample, the x-component of
the magnetic evolution is of the form

(2.14)
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cld;Btl——(Jl'-”z J2B1)/pi - —(32 B3 tB—> B3)/ﬂopl (2.15)

Spatial derivatives were approximated by finite differennesrectangular grid. The rectangular
plane of sizel(,Ly) = (10cm, 10cm) was divided into cells of sizi,dy). The magnetic field, the
current density;and the charge density were evaluated at full integer grid pointsdi n.dy), n;» = 1,
2,---. The electric fieldg, was placed on an interlaced grid with nodesnat+(1/2)dx, (n, + 1/2)y
because its curl was required to evaluw&it. Charged particles within- 1/2 —i + 1/2,j - 1/2 —j + 1/2
were binned to the nodé(i ,j = 1, 2,---). The total charge at a particular grid (thermaarticle charge)
was not just the sum of all the particle charges binnetieéqbint but a weighted sum reflecting the
position of each particle from the grid node. For example, éclganh a positionr, contributes to the

drg
'y

macro-particle charge of the grid node an amayist —-, wherer is the grid size. Since the model is

2-D, this weighting is an area weighting.

The field quantitiesdB and E were defined only at the grid nodes but the particles occupied
positions all around the nodes. The field felt by a particienddl to a grid nodey was estimated by a
bilinear interpolation using field values from the four neanestes containing the particles (Press et al.
1986 [13]), i.e.

P(xy) = (1-)(Lu) ¥ + (LU i1k U g ka1 (- DUY ka1 (2.16)
where, t= X% u= Y ¥ , andy is the fieldE or B.
AX Ay

The tritium ions were pushed by the mid-point scheme

XH2=xH2 1 yogevt =vo + dEV2(x112) 4 12 BL2(x 12y 1gt  (2.17)
m

where, V2 =yo 4 9 gEl2 4+ o x gl2), (2.18)
m

X = (x,y), and the superscripts refer to time levels. The partiokitions and their velocities leap-froged
over each other. The leap-frog scheme introduces a free Btgeamrent density” (particle velocities
remaining constant while positions changed). The total current density at half-time stéff® was
computed as the sum &#fand the contribution fror&” andB*?

2=y +%(,BE* +axBY?) (2.20)
where

B=> 6(xY%)q Img,a = G(xY2)q2v° Img , E =E(0"2B*) and

G is area weighting factor (s = 1 for one specie plasma).

We did not follow the deuterium beam dynamics. The beam onlydadvhe wake fields that
interact with the tritium plasma.

A total of 2000 tritium ions, 1000 - 4000 deuterium ion beam were usee isirtiulation. A
random function (from the system random generator) generatedoé g&tticle positions X and their
corresponding velocities in the intervglV O [0.1]. An amplification factoAP = 100 spread the random
sets to cover the simulation space. Starting with th&*$et®, B° the computational cycle proceeded as
shown in the flow chart below.
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Figure 1: Block diagram of the computational procedure.

The code is well structured such that the evaluation of anytiguamthe box is by means of a
call to appropriate subroutine. For example, in one computationa tyel subroutine PUSH will be
called twice to push particles from’,)(xl/2 X?3. The subroutine CHARGE will be called three times
corresponding to time levels O, 2/3. The primary data outpatgshase of particle positions,
velocities, the electric and magnetlc flelds at the endoytcke. Every diagnostics must be in terms of the
primary data. In this paper we report the measurements gbawer spectrum of the electric field,
particle diffusion, charge density fluctuation and Joule heatirtheoplasma. Each of these quantities has
appropriate subroutine that draws appropriate data and evaluatearitig/qu

The power spectrum of the electric field was computed hiytéiking the autocorrelatioB(t) of
the electric field and then the cosine transform of the autocorel@awson 1983 [3], Press 1983 [13]),

t
that is, G(r) = %j E(t)E(t +7)dt (2.21)
P(c) = [G(r)cogar)dr (2.22)
The Joule heating(X,t) was estimated as the product of the current density J and ttrecdieldl E;
H(Xt) =J.E (2.23)

Constants such as electron charge, proton mass, magnetic patynedddiric permittivity of free space,
ambient magnetic field B Alfven wave velocityW, were assigned arbitrary simulation values. This is
often the practice in simulation since the essence is targetsight about the nature of the response of
the system to the perturbations rather than actual values.

3.0 Resultsand discussion

Figure 1a shows the power spectrum of the background electdgctfiat is, when there is no
beam. There is a pick about zero frequency and a continuous spethrenotal energy (numerically
equal to the area under the curve) available in the wave frameyismaell. The power axis is of the
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order of 10*Js®. When the deuterium ion beam with parameters 0.2V, n, = 0.5, and radiugy, =
1.2a, is switched on, four characteristic frequencies for energy piiiorcan be seen on the spectrum
(Figure 1b). The characteristic frequencies become very shaep the beam density is increased to
n,=2n, (Figure 1c). The total energy available in the wave éasnvery large compared to when there
were no waves. The sharpness of the characteristic freqeénéaind to increase with increasing beam
density keeping other beam parameters constant. However, thesingrdee beam radius frorp= 1.23,

to r, = 1.5, destroys two of the characteristic lines and spread¢geiéncy of the continuous spectrum
(Figure 1d). Higher and higher beam radius eliminates chasdittelines suggesting that narrow
deuterium ion beams excite waves of characteristic frequeth@dasa broad beam. This is consistent
with equation (10) and equation (11) which show that the beam elaottimagnetic fields are stronger
for a narrow beam than a broad one, Similarly, beams of highertydgmse stronger electric and
magnetic fields than low density beams. When the beam fieddstimng, they couple more effectively
with the plasma giving rise to wave excitations at multiple freqesnci

The magnetic field profile did not oscillate like the éliecfield. It either grows or falls
continuously as shown in Figure 2 for theomponent in the core region of the plasma. The profi; of
(zcomponent) shows that the applied constant magnetic Bigld well influenced by the electric and
magnetic fields of the beam and plasma currents. The muigkis not uniform across the plasma. Close
to the edge (region 2,2) of the plasfais enhanced while at the core, region (5,5) it is degraded
(Figures. 2a and 2b). The beam plasma interaction has thoduog&d inhomogeneity in the confining
magnetic fieldB,. The plasma ion drift velocity will respond to this inhomogenaity subsequently the
electric field. This may probably be the cause of localizeditg and turbulence reported by Ferreira et
al (2002) [7]. Surprisingly, the magnetic field evolution appears nospmnel to changing beam data.

Figure 3 shows the macroparticle charge density fluctnatith time in the core region of the
plasma. The beam parameters ¥ge= 0.2Va, N, = 0.51, andr, = 1.28,. The fluctuation of the charge
density is expected as the plasma ions feel different falggending on their positions and velocities.
The fluctuation however, is always positive as it should be otherwiséetttaeeand magnetic field of the
excited waves will be infinite (equations. 2.13 and 2.14). The ehdegsity fluctuations are similar for
other beam-plasma parameters. This is expected since periodic lyogodditions ensure that the
plasma particles are conserved within the simulation plane.

Figure 4 shows the rate of Joule heating of the plasma. Whenisheoebeam, no appreciable
heating takes place for a very long time and when it startather drain energy from the plasma. This is
perhaps due to wave excitation, which in the absence of beams magcoaved at the expense of the
plasma internal energy (Figure 4a). When the beam paranag®f, = 0.2V, n, = 0.5, andr, = 1.23,,
the core region of the plasma becomes heated almost imelgdla beams enter the plasma (Figure
2.4a and 2.4b). Near the boundary no heating takes place for a lor{§igome 2.4c). It is most probable
that the core heats first and thereafter convection through thiealéaid takes the heat to the boundary.
When the beam density is increased suchrifyatn,, both the core and the edge heat almost immediately
though the core cools faster than the edge. The beam densit9h, makes the core and the boundary
regions to heat continuously. When the beam radius is imctdéasn 1.2, to 2.5, it was found that the
direction of the convection has reversed in that the boundaignragats faster than the core. Since the
Joule heating is proportional to the product of J and E, either tbr rhay affect the heating rate.
However, since the charge density is nowhere zero, the culeesity too will be nowhere zero. The
vanishing or localized Joule heating must be attributed the electdofi@laves.

Other common diagnostics of plasma simulation include the eldathd profile, the particle
distribution, the drag on particles and diffusion. The effect ofrbygarameters and the quiet initialization
mode on these quantities shall form the subject of our next report.

Journal of the Nigerian Association of Mathematic&hysics, Volume 9, (November 2005)
Simulation of ion beam-plasm interaction I. M. E¢fand R. Akin-Ojo J. of NAMP



x 10
20 —
Power Sp.
10 —
0 —
T T T T T T T T T T T
-5 4 -3 2 -1 0 1 2 3 4 5
Frequency x 1™
n,=0
Figure 1(a): Power spectrum of the electric field.
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Figure 1(b): Power spectrum of the electric field
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Figure 1(c): Power spectrum of the electric field
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Figure 1(d): Power spectrum of the electric field
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Figure 2: Z-component of the magnetic field profile (a) nde edge, (b) at the core
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4.0 Conclusion

We have successfully simulated the hybrid model of beam plageraction using our code. It
was found that for a fixed beam radiysand velocity,, plasma heating is more effective when a dense
ion beam is used than a sparse one. Similarly, for fixathqgrameters, plasma heating is higher with a
narrow beam than a broad one. The Joule heating is very sensithe heam parameters. The heating
may be localized, continuous or zero, depending on the beam data. Conefigais through the
electron fluid serve to distribute the localized heatingikdnthe power spectrum and Joule heating, the
magnetic field profile is not sensitive to the beam paramebet it is sufficient enough to cause
modification of the applied magnetic fiel8,. The charge density fluctuation is everywhere positive
definite within the simulation space therefore ensuring thatléuotrie and magnetic fields of the excited
waves remain finite.
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