Journal of the Nigerian Association of Mathematical Physics, Volume 9, (November 2005)

On actions of algebraic groups

Henry Osaretin Omokaro
 Department of Mathematics, University of Benin,Benin City.

Abstract

> In [6] we discussed the Lie Algebra associated with an algebraic group G. In this work, we employ morphical action of G to obtain a necessary and sufficient condition for a finite dimensional subspace F of $K[X]$ to be stable under all translations where K[X] denotes the set of polynomials in the variables $x_{1}, x_{2}, \ldots, x_{n}$. Group action is discussed briefly as a build up to morphical action of algebraic group.

pp 541 -

1.0 Introduction

We start this work by looking at group action.

Definition

Let G be a group and X a set. Consider a map $G \times X \rightarrow X:(x, y) \rightarrow x . y$ which satisfies the following conditions:
(1) $\quad\left(x_{l} x_{2}\right) y=x_{l}\left(x_{2} y\right)$
and
(2) $e y=y$
for all $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{G}, \mathrm{y} \in \mathrm{X}$, where e is the identity element of G. We say that G acts on X on the left. Similarly, we define right group action. In this paper we shall simply call it a group action on X. In fact a set, which a group acts on, is called a G-space [3].

Definition

Let a group G act on a set X and let $\mathrm{y} \in \mathrm{G}$. The set $\mathrm{Gy}=\{x \in X: x \mathrm{y}=y\}$ is called the isotropy group of y.

The set G. $y=\{x y: x \in G\}$ is called the orbit of y . An element y of X is called a fixed point of the group action if G. $y=y[5]$.

There are numerous examples of group actions in [5]. Group action has been extended to the case of an algebraic group acting on a variety [1].

2.0 Morphical action of algebraic group
 Definition

Let $\mathrm{A}^{\mathrm{n}}(\mathrm{K})$ denote the affine n-space and K a field equipped with the Zariski topology. A subset of $A^{\mathrm{n}}(K)$ is called an affine algebraic set.

An affine algebraic set is called irreducible if whenever V_{1} and V_{2} are closed subsets of $A^{\mathrm{n}}(k)$ and $X=V_{1} \cup V_{2}$ then either $X=V_{1}$ or $X=\mathrm{V}_{2}$.

An affine algebraic set X is called an affine variety if it is irreducible.
Let X and Y be varieties. A mapping $\varphi: X \rightarrow Y$ is called a morphism of varieties if it satisfies the following conditions:

1. $\quad \varphi$ is continuous
2. For every regular mapping, $f: Y \rightarrow K$ and every open subset V of Y, the mapping: $f \circ \varphi: \varphi^{-}$ ${ }^{1}\left(\mathrm{~V}_{1}\right) \rightarrow K$ is a regular mapping.

Definition

Let G be a set, which satisfies the following conditions:

1. G is an abstract group
2. G is a topological space with respect to the Zariski topology
3. The group operations $\mathrm{G} x \mathrm{G} \rightarrow \mathrm{G}:(x, \mathrm{y}) \rightarrow x \mathrm{y}$ and $\mathrm{G} \rightarrow \mathrm{G}: x \rightarrow x^{-1}$ are morphism where x^{-1} denotes the inverse of x in G. G is called an algebraic group [6].
One would like to mention here that an algebraic group is not necessarily a topological group except in dimension O because in our definition above, $G \times G$ has the Zariski topology whereas in a topological group $G \times G$ has the product topology [5].

Definition

Let G be an algebraic group and X an algebraic variety. If there exists a morphism $G \times X \rightarrow X$ such that the following conditions are satisfied:

1. $\left(x_{1} x_{2}\right) \mathrm{y}=x_{1}\left(x_{2} \mathrm{y}\right)$
2. $e \mathrm{y}=\mathrm{y} \forall x_{1}, x_{2} \in \mathrm{G}, \mathrm{y} \in \mathrm{X}$, where e is the identity element of G , we say that G acts morphically on the variety X.

Let us now consider some examples of morphical group action. In the following examples, G is an algebraic group.

1. The mapping $\phi: \ln (\mathrm{G}) \times \mathrm{G} \rightarrow \mathrm{G}$ such that $\phi\left(f_{x}, g\right)=f_{x} g \forall \mathrm{f}_{x} \in \ln (G), g \in G$ where $\ln (G)$ denotes the set of all inner authomorphisms of G [5] is a morphical action of G on itself.
2. The mapping $\phi: \mathrm{G}_{\mathrm{L}} \times \mathrm{G} \rightarrow \mathrm{G}$ defined by $\phi\left(\mathrm{L}_{x}, \mathrm{~g}\right)=\mathrm{L}_{x} \mathrm{~g} \forall \mathrm{~L}_{x} \in \mathrm{G}_{\mathrm{L}}, \mathrm{g} \in \mathrm{G}$ is a morphical action of G on itself as left translation. We know that ϕ is a group action [5]. In fact it is a morphical action of the algebraic group G on itself.
3. Let $\phi: G \rightarrow G L(V)$ be a rational representation of G. The operation $G x V \rightarrow V$ such that x.v $=$ $\phi(x) v$ is a morphical group action of G on V, where V is a vector space over the field associated with the algebraic group G. Clearly, $x_{1} x_{2}(V)=\phi\left(x_{1} x_{2}\right) V=\phi\left(\mathrm{x}_{1}\right) \phi\left(\mathrm{x}_{2}\right) V=\phi\left(\mathrm{x}_{1}\right)\left(\phi\left(\mathrm{x}_{2}\right) V\right)=x_{1}\left(x_{2} V\right) \forall \mathrm{x}_{1}, x_{2} \in G$, $v \in V$.

Also $e \mathrm{v}=\phi(e) v=\mathrm{v}$, since $\phi(e)$ is the identity linear transformation, ϕ being a homomorphism. Therefore G acts on V. In fact it is a morphical action of G. It is easy to see that V forms a G-module over G with respect to the operation $x . \mathrm{v}=\phi(x) v \forall x \in \mathrm{G}, v \in V$. The G-module V is called a rational G-module.

Now let $\phi: G \rightarrow G L(V)$ be a rational representation of the algebraic group G. If we identify G with the affine n-space $(n-\operatorname{dim}(V))$ it is clear that the operation $x \mathrm{v}=\varphi(x)(v),(x \in G, v \in V)$ define an action of G on V. The map $\phi: G \rightarrow G L\left(V^{*}\right)$ such that $\phi(x) f=x . f$, where V^{*} is the dual vector space of V, is called the dual or contragradient representation [5].

Note that $(x . \mathrm{f})(\mathrm{v})=\mathrm{f}\left(x^{-1} \mathrm{v}\right)$ and x^{-1} is written to ensure that $\mathrm{y}(x . f)=(\mathrm{y} x) \mathrm{f} \forall f \in \mathrm{~V}^{*}, v \in V, x \in G$.
Now let $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V}$. Then (x.f) $\left(v_{1}+v_{2}\right)=f\left(x^{-1}\left(v_{1}+v_{2}\right)\right)$, by definition

$$
\begin{aligned}
& =f\left(\mathrm{x}^{-1} \mathrm{v}_{1}+x^{-1} v_{2}\right), \mathrm{V} \text { is a G-module } \\
& =f\left(\mathrm{x}^{-1} \mathrm{v}_{1}\right)+f\left(x^{-1} v_{2}\right), f \text { being linear } \\
& =(x f)\left(\mathrm{v}_{1}\right)+(x f)\left(v_{2}\right) \text {, by definition. }
\end{aligned}
$$

3.0 Morphisms obtained by translations

In this section, we discuss linear actions of an algebraic group on an affine algebra $K[X]$ and some of its finite dimensional spaces when G acts on an affine variety X where $K[X]$ denotes the set of polynomials in the variables $x_{1}, x_{2}, \ldots, x_{\mathrm{n}}$.

If an algebraic group G acts morphically on an affine variety X we know that $G \times G \rightarrow G$:
$(x, y) \rightarrow x y$ is a morphism of varieties. It follows that the map $f: X \rightarrow X$ such that $f(y)=\phi\left(x^{-1}, y\right)(x \in G, y \in X)$ is a morphism of varieties, where ϕ is the group action of the algebraic group G on the variety
X . Let us denote by τ_{x} the comorphism associated with the morphism f for each fixed $x \in \mathrm{G}$ and for each $\mathrm{f} \in \mathrm{K}[X]$ and $\mathrm{y} \in X$, consider the operation $\left(\tau_{x} f\right)(y)=f\left(x^{-1} y\right)$.

Consider the mapping $\tau: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{K}(\mathrm{X}))$ such that $\tau(x)=\tau_{x}$. Let $g_{1}, g_{2} \in \mathrm{G}$. Then $\tau\left(g_{1} g_{2}\right)=\tau_{g_{1} g_{2}}$ by definition. If $f \in K[X]$, consider

$$
\begin{aligned}
\left(\tau\left(g_{1} g_{2}\right) \mathrm{f}\right)(\mathrm{y}) & =f\left(\tau\left(\mathrm{~g}_{1} \mathrm{~g}_{2}\right)(\mathrm{y})\right)=f\left(\left(g_{1} g_{2}\right)^{-1} y\right) \\
& =f\left(\mathrm{~g}^{-1}{ }_{2} \mathrm{~g}_{1}{ }^{-1} y\right)=f\left(\mathrm{~g}_{2}^{-1}\left(\mathrm{~g}_{1}{ }^{-1} y\right)\right)=\left(\tau\left(\mathrm{g}_{2}\right) \tau\left(\mathrm{g}_{1}\right) f\right)(\mathrm{y})
\end{aligned}
$$

$\therefore \tau$ is a group homomorphism. So τ is a representation of the algebraic group G.
Definition
$\tau(x)=\tau_{x}$ is called a Translation of Functions by \boldsymbol{x}. In fact it is a K-algebra authomorphism of $\mathrm{K}[\mathrm{x}]$.

Now we have considered the action of G on a variety X. Suppose, in particular, the variety $X=\mathrm{G}$, so that G acts on itself by left translations $y \rightarrow x y$ and by right translations $y \rightarrow y x^{-1}$.

For the left translations, the morphism introduced earlier becomes y $\rightarrow x^{-1} y$ while for right translations, the mapping becomes $y \rightarrow y x$. The comorphism associated with the first one is λ_{x} while the one associated with the second one becomes $\rho_{x} . \lambda_{x}$ is called Left Translation of Functions by x while ρ_{x} is called Right Translation of Functions by x, where $\left(\lambda_{x} f\right)(y)=f\left(x^{-1} y\right)$ and $\left(\rho_{x} f\right)(y)=f(y x)$. So we see that the operations λ : G $y \rightarrow G L(K[G])$ and $\rho: G \rightarrow G L(\mathrm{~K}[\mathrm{G}])$, where $\lambda(x)=\lambda_{x}$ and $\rho(x)=\rho_{x}$ are both group morphisms.
Proposition
λ_{x} and ρ_{y} commutes for each pair of elements $\mathrm{x}, y \in \mathrm{G}$.
Proof
We show that $\lambda_{x} \rho_{y}=\rho_{y} \lambda_{x} \forall x, y \in \mathrm{G}$.
Let $f \in K[G]$: Since $X=G, z \in G$ gives

$$
\left.\left[\left(\lambda_{x} \rho_{y}\right) f\right)(z)=\left(\lambda_{x}\left(\rho_{x} f\right)\right) z\right)=\left(\lambda_{x} f\right)(z y)=f\left(x^{-1} z y\right)
$$

Similarly,

$$
\left.\left(\rho_{y} \lambda_{x}\right) f\right)(z)=\left(\rho_{y}\left(\lambda_{x} f\right)\right)(z)=\left(\rho_{x} f\right)\left(x^{-1} z\right)=f\left(x^{-1} z y\right)
$$

Therefore $\quad\left(\left(\lambda_{x} \rho_{y}\right) f\right)(z)=\left(\left(\rho_{y} \lambda_{x}\right) f\right)(z) \forall z \in G$.
Hence, we conclude that $\lambda_{x} \rho_{y}=\rho_{y} \lambda_{x}$ for each pair of elements $\mathrm{x}, \mathrm{y} \in G$. That is λ_{x} and ρ_{y} commutes.
We now employ this result, among other things, to obtain a characterization of memberships of closed subgroups in an algebraic group.
Theorem
Let H be a closed subgroup of an algebraic group G, I the ideal of $K[G]$ vanishing on H. Then H $=\left\{x \in G: \rho_{x}(I) \subset I\right\}$.

Proof

First we show that $\mathrm{H} \subset\left\{x \in \mathrm{G}: \rho_{x}(I) \subset I\right\}$. So let $x \in H$. Our task is to show that $\rho_{x}(I) \subset I$. So we choose $f \in I$.

Now $\left(\rho_{x} f\right)(y)=f\left(\rho_{x}(y)\right)=f(y x) \quad \forall \mathrm{y} \in \mathrm{H}$. Now $x, y \in H \Rightarrow x y \in H, H$ being a subgroup. Since $f \in I$, it follows that $f(\mathrm{xy})=0$. That is $\rho_{\mathrm{x}} f(\mathrm{y})=0 \forall y \in H$, hence $\rho_{x} f \in \mathrm{I}$.

Conversely, we show that if $x \in \mathrm{G}$ such that $\rho_{x}(I) \subset I$, then $x \in \mathrm{H}$. Let $f \in \mathrm{I}$ then $\rho_{x}(f) \in I$ by assumption and so $\left(\rho_{x} f\right)(z)=0 \forall z \in H$. In particular, $\mathrm{e} \in \mathrm{H}$ (where e is the identity element of G). Therefore $\left(\rho_{x} f\right)(e)=0$. But $\left(\rho_{x} f\right)(e)=f(e x)=f(x)$.
Therefore $f(x)=0 \forall f \in \mathrm{I}$ and so $x \in \mathrm{H}$. Thus $\left\{x \in \mathrm{G}: \rho_{\mathrm{x}} \mathrm{I} \subset I\right\} \subset H$.
We therefore conclude that $H=\left\{x \in G: \rho_{\mathrm{x}} \mathrm{I} \subset \mathrm{I}\right\}$ and the proof is complete.

Preposition

(a) Let an algebraic group G act morphically on an affine variety X and let F be a finite dimensional subspace of $\mathrm{K}[\mathrm{X}]$. There exists a finite dimensional subspace of $\mathrm{K}[\mathrm{X}]$ including F which is stable under all translations $\tau_{x}(x \in \mathrm{G})$.
(b) $\quad \mathrm{F}$ is itself stable under all translations $\tau_{x}(x \in \mathrm{G})$ if and only if $\phi^{*}(\mathrm{~F}) \subset \mathrm{K}[\mathrm{G}] \frac{\otimes}{K} \mathrm{~F}$ where $\phi: G \mathrm{x}$ $X \rightarrow X$ gives the action n of G on X.

Proof

(a) We assume without loss of generality that F is the span of a single $f \in K[X]$ and "add up" the resulting spaces E afterwards. Let us write

$$
\phi^{*} \mathrm{f}=\sum \mathrm{f}_{\mathrm{i}} \otimes \mathrm{~g}_{\mathrm{i}} \in K[G] \otimes K[X] ., \text { For each } x \in G, y \in X,\left(\tau_{x} f\right)(y)=f\left(x^{-1} y\right)=\sum f_{\mathrm{i}}\left(\mathrm{x}^{-1}\right) \mathrm{g}_{\mathrm{i}}(\mathrm{y})
$$

where $\tau_{x} f=\sum f_{i}\left(x^{-1}\right) g_{i}$. The functions g_{i} therefore span a finite dimensional subspace of $\mathrm{K}[\mathrm{X}]$ which contains all translates of f. So the space E spanned by all $\tau_{x} f$ gives the desired result.
(b) \quad Suppose $\phi^{*}(\mathrm{f}) \subset K[\mathrm{G}] \otimes F$. We show that F is stable under all $\tau_{x}(x \in \mathrm{G})$. From (a) above, since $\phi^{*}(\mathrm{~F}) \subset \mathrm{k}[\mathrm{G}] \frac{\otimes}{K} \mathrm{~F}$ we can take the functions g_{i} to be in F , that is, F is stable under all $\tau_{x}(\mathrm{x} \in \mathrm{G})$ and that proves the first part. Conversely, suppose F is stable under all τ_{x} we show that $\phi^{*}(F) \subset k[G] \otimes F$.

We can extend a vector space basis f_{i} of F to a basis $f_{i} U g_{\mathrm{i}}$ of $K[X]$. If $\phi^{*}(F)=\sum r_{\mathrm{i}} \otimes f_{\mathrm{i}}+\sum \mathrm{s}_{i} \otimes g_{\mathrm{i}}$ we have $\tau_{\mathrm{x}} f=\sum r_{\mathrm{i}} \otimes f_{\mathrm{i}}+\sum \mathrm{s}_{\mathrm{i}}\left(\mathrm{x}^{-1}\right) \mathrm{g}_{\mathrm{i}}$

Clearly, the functions s_{i} must vanish identically on G. That is $\phi^{*}(F) \subset k[G] \otimes F$.

References

1. Armand Borel Linear Algebraic Groups, Springer-Verlag, New York, 1985.
2. Jeane Pierre Serre Algebraic Groups and Class Fields, Springer-Verlag, New York, 1995.
3. Thomas Banachoff, John Werner Linear Algebra Through Geometry, Springer-Verlag, New York, 1980.
4. Williams C. Waterhouse Introduction to Affine Group Schemes, Springer-Verlag, New York, 1979.
5. Omokaro, H. O:Action of Algebraic Groups, (ICTP), Trieste, Italy, 1996.
6. Omokaro, H. O, On the Lie Algebra of an Algebraic Group, Journal of the Nigerian Association of Mathematical Physics Vol. 7 (2003) pp 23-26.

Journal of the Nigerian Association of Mathematical Physics, Volume 9, (November 2005)

