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 Abstract 
 
In  [6] we discussed the Lie Algebra associated with an algebraic group G. In 
this work, we employ morphical action of G to obtain a necessary and 
sufficient condition for a finite dimensional subspace F of K[X] to be stable 
under all translations where K[X] denotes the set of polynomials in the 
variables x1,x2, …, xn. Group action is discussed briefly as a build up to 
morphical action of algebraic group. 
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1.0 Introduction 
 We start this work by looking at group action. 
Definition 
 Let G be a group and X a set.  Consider a map G x X → X: (x,y) → x.y which satisfies the 
following conditions: 
 (1) (x1x2)y = x1(x2y)  
and 
 (2) ey = y 
for all x1,x2 ∈G, y∈X, where e is the identity element of G.  We say that G acts on X on the left. Similarly, 
we define right group action. In this paper we shall simply call it a group action on X. In fact a set, which 
a group acts on, is called a G-space [3]. 
Definition 
 Let a group G act on a set X and let y∈G. The set Gy = {x∈X:xy = y} is called the isotropy group 
of y. 
 The set G.y = {xy:x∈G} is called the orbit of y. An element y of X is called a fixed point of the 
group action if G.y = y [5]. 

There are numerous examples of group actions in [5]. Group action has been extended to the case 
of an algebraic group acting on a variety [1]. 
 
2.0 Morphical action of algebraic group 
 Definition 
 Let An(K) denote the affine n-space and K a field equipped with the Zariski topology. A subset of 
An(K) is called an affine algebraic set. 
 An affine algebraic set is called irreducible if whenever V1 and V2 are closed subsets of An(k) and 
X = V1UV2 then either X = V1 or X = V2. 
 An affine algebraic set X is called an affine variety if it is irreducible. 
Let X and Y be varieties. A mapping φ: X → Y is called a morphism of varieties if it satisfies the following 
conditions: 

1. φ is continuous 
2. For every regular mapping, f: Y → K and every open subset V of Y, the mapping: f o φ: φ-

1(V1) → K is a regular mapping. 
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Definition 
 Let G be a set, which satisfies the following conditions: 

1. G is an abstract group 
2. G is a topological space with respect to the Zariski topology 
3. The group operations G x G → G:  (x,y) → xy and G → G: x → x-1 are morphism 

where x–1 denotes the inverse of x in G. G is called an algebraic group [6]. 
 One would like to mention here that an algebraic group is not necessarily a topological group except in 

dimension O because in our definition above, G x G has the Zariski topology whereas in a topological 
group G x G has the product topology [5]. 
Definition 
Let G be an algebraic group and X an algebraic variety. If there exists a morphism G x X → X such that 
the following conditions are satisfied: 

1. (x1x2)y = x1(x2y) 
 2. ey = y ∀ x1,x2 ∈G, y∈X, where e is the identity element of G, we say that G acts 
morphically on the variety X. 
 Let us now consider some examples of morphical group action.  In the following examples, G is 
an algebraic group. 
1. The mapping φ:ln(G) x G → G such that φ(f x, g) = fxg ∀ fx∈ln(G), g ∈ G where ln(G) denotes the 
set of all inner authomorphisms of G [5] is a morphical action of G on itself. 
2. The mapping φ:GL x G → G defined by φ(Lx,g) = Lxg ∀ Lx∈GL, g∈G is a morphical action of G 
on itself as left translation.  We know that φ is a group action [5].  In fact it is a morphical action of the 
algebraic group G on itself. 
3. Let φ:G → GL(V) be a rational representation of G.  The operation G x V → V such that x.v = 
φ(x)v is a morphical group action of G on V, where V is a vector space over the field associated with the 
algebraic group G.  Clearly, x1x2(V) = φ (x1x2) V = φ(x1) φ(x2)V = φ(x1) (φ(x2)V) = x1(x2V) ∀ x1, x2∈G, 
v∈V. 

Also ev = φ(e)v = v, since φ(e) is the identity linear transformation, φ being a homomorphism. 
Therefore G acts on V.  In fact it is a morphical action of G. It is easy to see that V forms a G-module over 
G with respect to the operation x.v = φ(x)v ∀x∈G, v∈V. The G-module V is called a rational G-module. 

Now let φ: G → GL(V) be a rational representation of the algebraic group G. If we identify G 
with the affine n-space (n-dim(V)) it is clear that the operation xv = φ(x) (v), (x∈G, v∈V) define an action 
of G on V. The map φ: G → GL(V*) such that φ(x)f = x.f, where V* is the dual vector space of V, is called 
the dual or contragradient representation [5]. 
 Note that (x.f) (v) = f(x-1v) and x-1 is written to ensure that y(x.f) = (yx)f ∀ f∈V*, v∈V, x∈G. 
 Now let v1, v2∈V. Then (x.f) (v1+v2) = f(x-1(v1+v2)), by definition 

           = f(x-1v1+ x-1v2), V is a G-module 
          = f(x-1v1) + f(x-1v2), f being linear 
          = (xf)(v1) + (xf)(v2), by definition. 

 
3.0 Morphisms obtained by translations 
 In this section, we discuss linear actions of an algebraic group on an affine algebra K[X] and some 
of its finite dimensional spaces when G acts on an affine variety X where K[X] denotes the set of 
polynomials in the variables x1, x2, …, xn. 
 If an algebraic group G acts morphically on an affine variety X we know that G x G → G:  
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(x,y) → xy is a morphism of varieties.  It follows that the map f:X→ X such that f(y) = φ(x-1,y)(x∈G, y∈X) 
is a morphism of varieties, where φ is the group action of the algebraic group G on the variety  
X. Let us denote by τx the comorphism associated with the morphism f for each fixed x∈G and for each 
f∈K[X] and y∈X, consider the operation (τx f) (y) = f(x-1y). 

Consider the mapping τ: G → GL (K(X)) such that  τ(x) = τx.  Let g1,g2∈G. Then τ(g1g2) = τ
21gg

by definition.  If f∈K[X], consider 
   (τ(g1g2)f)(y) = f (τ(g1g2)(y)) = f ((g1g2)

-1y) 
           = f (g-1

2g1
-1y) = f (g2

-1(g1
-1y)) = (τ(g2) τ(g1)f) (y). 

∴ τ is a group homomorphism. So τ is a representation of the algebraic group G. 
Definition 
 τ(x) = τx is called a Translation of Functions by x. In fact it is a K-algebra authomorphism of 
K[x].  
 Now we have considered the action of G on a variety X. Suppose, in particular, the variety X = G, 
so that G acts on itself by left translations  y → xy and by right translations y → yx-1. 
 For the left translations, the morphism introduced earlier becomes y → x-1y while for right 
translations, the mapping becomes y → yx. The comorphism associated with the first one is λx while the 
one associated with the second one becomes ρx.λx is called Left Translation of Functions by x while ρx is 
called Right Translation of Functions by x, where (λxf)(y) = f (x-1y) and (ρx f)(y) = f (yx). So we see that 
the operations λ: G y → GL(K[G]) and ρ: G  → GL(K[G]), where λ(x) = λx and ρ(x) = ρx are both group 
morphisms.  
Proposition 
 λx and ρy commutes for each pair of elements x,y∈G.  
Proof 

We show that λxρy = ρyλx ∀x, y∈G.  
Let f ∈K[G]: Since X = G, z ∈G gives  

   [(λxρy)f )(z) = (λx(ρyf ))z) = (λxf )(zy) = f (x-1zy). 
Similarly, 
    (ρyλx)f )(z) = (ρy(λxf ))(z) = (ρyf )(x

-1z) = f (x-1zy). 
Therefore   ((λxρy)f)(z) = ((ρyλx)f)(z) ∀z∈G. 
Hence, we conclude that λxρy = ρyλx for each pair of elements x,y∈G. That is λx and ρy commutes. 
 We now employ this result, among other things, to obtain a characterization of memberships of 
closed subgroups in an algebraic group. 
Theorem 
 Let H be a closed subgroup of an algebraic group G, I the ideal of K[G] vanishing on H. Then H 
= {x∈G: ρx (I) ⊂ I}. 
Proof 
 First we show that H ⊂ {x∈G: ρx(I) ⊂ I}.  So let x∈H.  Our task is to show that ρx(I) ⊂ I. So we 
choose f ∈I.  
 Now (ρxf )(y) = f (ρx(y)) = f (yx)  ∀ y∈H. Now x,y∈H ⇒ xy∈H, H being a subgroup. Since f∈I, it 
follows that f (xy) = 0.  That is ρxf (y) = 0  ∀ y∈H, hence ρxf ∈ I. 
 Conversely, we show that if x∈G such that ρx(I) ⊂ I, then x∈H. Let f ∈ I then ρx(f) ∈I by 
assumption and so (ρxf)(z) = 0 ∀z∈H.  In particular, e∈H (where e is the identity element of G).  
Therefore (ρxf)(e) = 0.  But (ρxf)(e) = f (ex) = f (x). 
Therefore f (x) = 0 ∀ f ∈ I and so x ∈ H. Thus {x∈G: ρxI ⊂ I} ⊂ H. 

We therefore conclude that H = {x∈G: ρxI ⊂ I} and the proof is complete. 
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Preposition 
(a) Let an algebraic group G act morphically on an affine variety X and let F be a finite 
 dimensional subspace of K[X]. There exists a finite dimensional subspace of K[X] including 
 F which is stable under all translations τx(x∈G). 

(b) F is itself stable under all translations τx(x∈G) if and only if φ*(F) ⊂ K[G]
K

⊗
F where φ: G x 

X→X gives the action n of G on X. 
Proof 
(a) We assume without loss of generality that F is the span of a single f∈K[X] and “add up” the 
resulting spaces E afterwards. Let us write 
 φ*f = ∑f i ⊗ gi∈K[G] ⊗ K[X]., For each x∈G, y∈X, (τxf)(y) = f(x-1y) = ∑fi(x

-1)gi(y) 
where τxf = ∑fi(x

-1)gi. The functions gi therefore span a finite dimensional subspace of K[X] which 
contains all translates of f. So the space E spanned by all τxf gives the desired result. 
(b) Suppose φ*(f) ⊂ K[G] ⊗ F.  We show that F is stable under all τx(x∈G).  From (a) above, since 

φ*(F) ⊂ k[G]
K

⊗
F we can take the functions gi to be in F, that is, F is stable under all τx(x∈G) and that 

proves the first part. Conversely, suppose F is stable under all τx we show that φ*(F) ⊂ k[G] ⊗ F. 
 We can extend a vector space basis fi of F to a basis f iU gi of K[X].  If φ*(F) = ∑r i⊗ fi + ∑si ⊗gi 
we have τxf = ∑ri⊗fi + ∑si(x

-1)gi  
Clearly, the functions si must vanish identically on G.  That is φ*(F) ⊂ k[G] ⊗ F. 
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