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Abstract 
 
 Two different embedding functions ( )ρAF  and ( )ρBF  obtained by 

two different research groups working with the embedded atom method 
(EAM) equations for bcc metallic Lithium are here shown to belong to the 
same class of functions recently characterised by Oni-Ojo et al [see the 
preceding paper].  The consequences of this harmonization are discussed. 
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1.0 Introduction 
 Yuan et al [1] recently reported the following embedding function, designated as FA(ρ) , for bcc 
metallic Lithium:  
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At the equilibrium value of the election density, i.e. ρ = ρ0, we get from (1.1) the results 

MODEL A:    















=′′

=′

=

2
0

0

0
0

0

4355.1)(

4356.3)(

0001.2)(

ρ
ρ

ρρ

ρ

eVF

eVF

eVF

A

A

A

    (1.2) 

with A = 0.87 , K = - 1.3933 , and E0 = 1.65eV and where a prime denotes differentiation with respect to 
ρ. 
 On the other hand, one of us [2] has also previously reported a completely different embedding 
function for bcc metallic Lithium, herein designated as FB(ρ), in the form 
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and which yields the following equilibrium values: 
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with 97.0,3074.0,1970.22,1 1 ===−= fff λαµ . 

 
Since we are unable to immediately see the connection between (1.1) and (1.3) or between (1.2) and (1.4), 
we seek in this paper to place both embedding functions in the same class of admissible embedding 
functions recently obtained for Lithium [see the preceding paper, Ref. 3].  How this is done is then the 
purpose of this communication.  A theory for the exact analytical form of the embedding function does 
not currently exist in the literature. 
 The organization of this paper is as follows. 
 In the next Section we collect together the basic equations of the embedded atom method (EAM) 
for a bcc metal and then briefly indicate how one arrives at the results (1.3) and (1.4).  In Section 3 we 
first generalize the embedding function (1.1) and then place both functions (FA and FB) in the same class.  
Some preliminary deductions are made from the generalized embedding function and concluding remarks 
are given in Section 4 
 
2.0. The Basic equations of the EAM for a bcc metal 
 We refer the interested reader to the several published papers [4-10] on the embedded atom 
method (EAM) for details, and confine ourselves here strictly to the aspects required for this study.  If 
F(ρ) denotes the embedding function and φ1(r) denotes the nearest neighbour pair potential, and ρ(r)  is 
the electron density at position r, then within a nearest neighbour model it can be shown that for a 
monoatomic bcc solid 
   )()(4 0010 ρφ FrU +=      (2.1) 
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and U0 is the energy per atom, i.e., the negative of the cohesive energy.  B and Cij are, respectively, the 

Bulk modulus and the elastic constants written in the Voigt notation. 
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nearest neighbour  distance; a is the lattice constant; ( )2
3

0
a=Ω   is the volume per atom; while V11 , W11 

, and W12 are three basic parameters of the EAM.  In this work we shall treat them as three parameters to 
be consistently determined so that equations. (2.1 – 2.7) are satisfied. 

The six equations (2.1 – 2.6) contain nine unknown parameters  
;,,,,,,,, 121111111 WWVFFF ′′′′′′ φφφ  and the standard physical inputs required to determine these 

unknowns are the lattice constant a, the cohesive energy E0 (= - U0), the bulk modulus B, and the three 
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elastic constants C11 , C12 , and C44.  An expression for the monovacancy formation energy f
vE1  in the 

form    ( ) 001 7)(8 UFFE v
f
v −−= ρρ   (2.8) 

 
 

is often considered as an additional equation that would aid in the determination of the unknown 
quantities. 
 In equation (2.8), ρv is the background electron density at site i, which is a nearest neighbour to 
the monovavancy.  We document in the Appendix the details of the method used by us to arrive at the 
solutions (1.3) and (1.4).  In Table 1 we collect together the input parameters used for the calculations, 
and in Table 2 we provide the nine EAM parameters determined by solving equations (2.1-2.7) for the 
two different models. 

 In most applications of the EAM ,   08

7 ρρ =v     (2.9) 

but in the modified embedded atom method (MEAM) employed by Yuan et al [1], ρv has a different value 
from that given by (2.9).  Within the MEAM this value of ρv will give a vacancy formation energy of 
0.495eV for Li.  If we, however, stick to the formulas (2.8) and (2.9) then it is easily verified that the 
embedding functions (1.1) and (1.3) predict different vacancy formation energies for Lithium.   

   Model A: eVE f
v 308.01 =     (2.10) 

   Model B: eVE f
v 495.01 =     (2.11) 

The resolution of this problem within the EAM is taken up in the next section. 
 
3.0 Generalized Embedding Function for Lithium 
 To be able to handle the two embedding functions on the same footing, we follow Oni-Ojo et al 
[3] and consider a generalized version of (1) in the form 
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showing clearly that F(ρ) is a four-parameter model.  For Lithium, K takes the value – 1.3933 [1]. 
Taking into account formulae (2.8) and (2.9), the embedding function (3.1) will yield the equilibrium 

value ( )0ρF  and the desired experimental value of ,495.01 eVE f
v =  provided 
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The parameter-fitting of the two models reveal that, while the values 
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will reproduce the solution set (12) , the values  
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reproduces the solution set (1.4). 
 The successful harmonization of the two different models through the generalized form (3.11) is 
one of the major achievements of this study.  Differentiation of equation (3.1) with respect to ρ yields 

immediately   ( ) ( )
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It is clear from (3.5a) and (3.5b) that the generalized form (3.1) is quite rich in structure unlike (1.1) 

which gives     ( ) ( )
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Thus, whereas ( )0ρAF ′′   is always positive definite, ( )0ρF ′′  may be positive or negative depending on 

the values of α and λ [3]. 
 At exactly the equilibrium electron density ρ0, it is clear that the solution (1.2) satisfies a second 

order linear differential equation of the form  0
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 Infact, for all values of ρ , (1.1) is a solution of (3.7).  Following Oni-Ojo et al [3], we 

immediately generalize (3.7) to the form  0
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where γ1 and γ0 are parameters to be determined later.  Correspondingly we generalize the solution (1.1)
 to a function of the form (3.1), and search for the condition for (3.1) to solve (3.8).  This can be 
got by putting (3.1) into (3.8).  A much weaker condition, however, which holds only at the equilibrium 

value ρ = ρ0 is clearly ( ) 012 01
2 =++
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The full implications of equation (3.9) are currently being studied and will be reported in the future.  For 
now, within the EAM, the (110) unrelaxed surface energy of bcc Lithium can be got from the simple 

formula   ( ){ } 
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Using equation. (3.10), Model A and B yield, respectively, the values 274 Ergs/cm2 and 298 Ergs/cm2.  A 
simple average of these two values give an unrelaxed surface energy of 286 Ergs/cm2 , in excellent 
agreement with the relaxed value of 287.2 Ergs/cm2 obtained by Yuan et al [1].  A simple minded 
conclusion is that the material described by Model B is slightly harder than that described by model A. 
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 It is usual in the literature [6] to consider a simple exponential fit for the electron density ρ(r) and 
the pair potential φ1(r).  It is clear from Table 2 that the values of φ1(r0) , φ′1 (r0) and )( 01 rφ ′′  do not support 

such a fit. 
 
 

A function of the form (1.3) was shown by Idiodi and Obodi [8] to be a solution of the nonlinear 

differential equation   ( ) 02
012 =′+′+′′ FFFFF fff ααα  (3.11) 

where 0f12   and, ααα ff  are parameters, defined for fcc metals and bcc metals in [8] and [2] 

respectively.  It can be verified that the function (1.1), and consequently, Model A is not a solution of 
(3.11).  We have, however, shown that both (1.1) and (1.3), in some neighbourhood of the equilibrium 
density ρ0 , can be fitted by the generalized form (3.1) or (3.8).  This has been made possible by the fact 
that the EAM equations specify only the equilibrium values of F, F′, and F″. 
  

Table 1: Physical quantities for bcc Li used to determine the EAM parameters 
 The quantities listed are the lattice constant a(Å) , the unrelaxed vacancy formation energy 

)(1 eVE f
v , the cohesive energy E0 (eV), the bulk modulus B(1012 ergs/cm3) , and the three elastic 

constants (C11 , C12 , C44) in units of 1012 ergs/cm3.  The values have been lifted from Yuan et al [1]. 
 

Physical 
Quantity 

A F
vE1  

E0 B0 C11 C12 C44 

Value 3.51 0.495 1.65 0.120 0.134 0.113 0.0958 
 

Table 2: Calculated EAM Parameters for bcc Lithium 
 

Parameter Unit Model A Model B 
F(ρ0) eV 2.0001 -7.5056 
F′ (ρ0) eV/ρ0 3.4356 -6.2187 

)( 0ρF ′′  2
0ρeV  

1.4355  2.0709 

)( 01 rφ  EV -0.9125  1.4638 

 

)( 01 rφ ′  EV/Å 
 
0.0984 

 
-0.1483 

)( 01 rφ ′′  EV/Å2 0.4513  0.3701 

V11 ρ0 -0.4021 -0.3348 

W11 ρ0 -0.0419  0.0232 
W12 ρ0 -0.1244  0.0687 

 
4.0 Conclusion 
 This study has successfully harmonized into one class, two different solutions to the same set of 
EAM equations.  This class is characterized by the generalized form (3.1) or (3.8).  Clearly the 
embedding function (3.1) is much richer in structure than the embedding function described by equation 
(1.1).  It is this flexibility or richness in structure that made the harmonization possible. 

The path pursued here can be viewed as an alternative approach to the one adopted by Yuan et al 
[1].  Yuan et al employed the MEAM which by design entails working with a simple embedding F(ρ) and 
a more complex density function ρ(r) that contains a lot of parameters.  We have in this study, however, 
employed the EAM and shifted focus from ρ(r) to the embedding function itself. 
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APPENDIX 

Calculation Algorithm for Solving the EAM Equations 

 The steps leading to the embedding function 
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can be found in Ref. 8 and will not be repeated here.  From (A1), expressions for F(ρ0) , F′(ρ0) , and 
( )0ρF ′′  can be easily derived.  The calculation procedure is then as follows: 

1st Step: Initialize all input parameters like  

 a, C11 , C12 , C44 , B0 , U0 (= - E0) , 
F
vE1  , and Ω0 for bcc metals, 2

3
0

a=Ω  and λf = 0.97. 

2nd Step: Guess a value for ( )40 << ff αα  and then calculate the following: 

   

f

ff

f

ee

e
X

λ

αα

α















−

−=
8

1
     (A2) 

   ( ) ( )
( )X

EU
XF

F
v

78
10

0 −
+=ρ      (A3) 

   ( ) ( ) 





 −⋅=′ 1.00

f
ff eFF

ααλρρ    (A4) 

   ( ) ( )[ ] ( )0
2

00 1 ρρλρ α
FFeF f

f ′⋅





 −=′′    (A5) 

   ( ) 312 01 ρFb ′−=       (A6) 

   ( ) ( )04412011 ρFCCV ′′−Ω−=     (A7) 

3rd Step: Verify self-consistency condition on αf  by calculating αf  from the formula 
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If Guessed  ≠fα  calculated fα ,  then repeat steps 2 to 3 until this self-consistency condition on fα  is 

satisfied.  Once fα  has been determined and hence  ( ) ( ) ( ),,, 000 ρρρ FFF ′′′  and V11 are known, then 

the remaining EAM parameters can be easily determined from equations (2.1 – 2.6). 
 The above calculation algorithm is efficient and it has been used in [2] to obtain EAM parameters 
for several bcc metals. 
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