
Journal of the Nigerian Association of Mathematical Physics, Volume 9, (November 2005) 
On the embedded atom  method  A. A. Oni-Ojo, E. Aghemenloh and J. O. A. Idiodi J. of NMAP 

Journal of the Nigerian Association of Mathematical Physics, Volume 9, (November 2005) 
 

On recent developments on the embedded atom method 
 

A. A. Oni-Ojo1, E. Aghemenloh2, and J. O. A. Idiodi3 
1,3Department of Physics, University of Benin, Benin City, Nigeria. 
2Department of Physics, Ambrose Alli University, Ekpoma, Nigeria  

 
 Abstract 

 
A recent modification to the embedding function F(ρ) for bcc Lithium by Yuan et 
al [10] is here generalised and then characterised by a second order linear 
differential equation.  The structure of the generalised function, unlike the 
embedding functions used hitherto, is sufficiently rich to allow for a Cauchy 
discrepancy (C12 – C44) that may be either positive or negative. 

 
pp 507 - 512 

 
1.0 Introduction 
 Semiempirical atomistic simulations have become an important tool in the study of the structure 
and properties of materials.  Fundamental to any such study is the choice of the manner in which the 
constituent atoms interact, i.e., the choice of an appropriate interatomic potential.  Simple potentials tend 
not to have enough flexibility to accurately portray real metals, while more fundamental approaches tend 
to be too unwieldy to carry out the desired calculations with sufficient efficiency. 
 A procedure for designing a mathematical model of a metal, called the embedded atom method 
(EAM), was developed about two decades ago by Daw and Baskes [1, 2].  In this approach, the energy 
required to place a small impurity atom in a lattice is taken solely as a function of the electron density at 
that particular site.  Each atomic species therefore has a unique energy function which is in turn a function 
of just the electron density.  Results obtained from the EAM have been encouraging in that the model has 
shown satisfactory agreement with experimental data over a spectrum of problems, often previously 
intractable. 
 In the practical application of the EAM three functions must be determined.  These are the 
embedding function F (ρ), the density function ρ(r), and the pair potential φ(r) between any two 
constituent atoms. 
 Efforts to improve the EAM led to the modified embedded atom method (MEAM), developed by 
Baskes et al [3, 4].  The MEAM parameters are published in [4] for several materials.  Although some 
other versions of MEAM have also been developed [5-9], the theory and parameters of MEAM92 
described in [4] are most commonly used. 
 The main difference between the EAM and MEAM lies in the construction of the density 
function ρ(r).  In the EAM, the electron density at site i, iρ  , is given by a linear superposition of 

spherically averaged atomic electron densities from neighbouring atoms to site i, while in the MEAM iρ  

is further augmented by angular dependent terms. 
 Recently Yuan et al [10] introduced a further modification into MEAM92, by adding a new 
parameter K into the embedding function F(ρ).  This was to enable them overcome the problems they 
encountered in the calculation of the surface energy of bcc Lithium, if the relaxation of surface atom 
positions are taken into account.  In spite of this modification, the model failed woefully for bcc 
Vanadium where it predicted a monovacancy formation energy that was 50% larger than the experimental 
value [11]. 
 In view of these problems encountered by Yuan and Coworkers, we shall in this study focus on 
the structure of the embedding function itself.  It has not enjoyed as much development as the density 
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function ρ(r).  A simple form for the atomic electron density ρ(r), as can be found in various simplified 
versions of the EAM would suffice for our purpose.  However, we have generalised the work of Yuan et 
al [10, 11] as far as the embedding function F(ρ) is concerned.  We furnish in this study a more flexible 
embedding function F(ρ), characterised by a second order linear differential equation.  This study will 
illustrate the rich structure of our generalised F(ρ). 
 In the standard EAM [2], the Cauchy discrepancy (C12 – C44) is determined by the curvature of 

( )ρF  at the equilibrium electron density ρ0.  In fact, C12 – C44 = ( ) 0
2

110 Ω′′ VF ρ  where Ω0 is the 

volume per atom and V11 is an EAM parameter.  Our characterization of F(ρ), in this study, is flexible 
enough to allow for both positive curvature and negative curvature.  This frees our model from the 
problems associated with the usage of restrictive forms of F(ρ). 
 The organisation of this paper is as follows.  A brief review of the EAM with the relevant 
equations is given in the next section.  In section 3, the embedding function used by Yuan and coworkers 
[10, 11], is examined and generalized, and applied in Section 4 to bcc Lithium and Vanadium.  The 
results obtained are analysed and discussed, and finally, concluding remarks are given in Section 5. 
 
2.0 Theory 
 The embedded atom method (EAM) is based on density functional theory, which asserts that the 
energy of a material can be written as a unique functional of the electron density [12, 13].  In the EAM, 
the important aspect of the electron density is assumed to be the local electron density at each atomic site, 
as provided by the surrounding atoms.  The total energy is divided into an electrostatic interaction plus an 
embedding energy, which is the energy required to place an atom in a uniform electron gas.  Thus, the 
total energy of an arbitrary arrangement of atoms is given by 

   ( ) ( )∑ ∑
≠

+=
i

ji
ji

ijijihitot RFE

)(
,

, 2

1 φρ     (2.1) 

where ( )ρiF  is the embedding energy of atom i, ρh, i  is the host electron density at atom i due to the 

surrounding atoms, )(Rijφ  is a short-ranged electrostatic interaction between atom i and atom j, Rij is the 

distance between atom i and atom j, and all summations are over all atoms.  The host electron density is 
often approximated by the superposition of atomic electron densities. 
 Daw [14] has derived the EAM energy form from density functional theory, thereby 
demonstrating the physical origin of the terms in equation (2.1).  Daw’s derivation ignores band-structure 
effects and assumes that the electron density can be approximated by a superposition of atomic electron 
densities.  Both of these assumptions are better approximations for fcc metals than for bcc metals.  
Jacobsen et al [15] have also derived EAM-type functions from ab initio methods, and their results also 
suggest that the EAM-type approach might be more appropriate for fcc metals than for bcc metals. 
 The EAM, in spite of the comments above, has been applied to diverse solids and its ability to 
accurately describe quite a wide range of material properties is one of the most surprising and powerful 
justifications of the approach [16].  Equation (2.1) shows clearly the three important functions that feature 
in the EAM – the embedding function F(ρ), the electron density function ρ(r), and the pair potential φ(r).  
The EAM, as initially developed by Daw and Baskes [2], requires quite some tedious numerical fitting to 
various physical quantities in order to determine the three functions.  In the past few years, several efforts 
[16-20] have been made, within the EAM, to circumvent the tedious numerical fitting required to 
determine EAM functions.  Thus, Idiodi and Obodi [20] derived embedding functions, containing three 
parameters, of the form 
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where 1±=µ ;  and  f0 , αf , and λf , are constants to be determined. 
 Within the MEAM, Baskes [4] utilized a simple embedding function of the form 
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to study several solids.  In (2.4), A is the only parameter to be determined and E0 is the sublimation 
energy (a known physical quantity).  Though (2.4) is simple, the density function ρ(r) utilized in the 
MEAM still requires very tedious fitting. 
 Recently Yuan et al [10] applied MEAM 92 to bcc Li but modified (2.4) to the form  

   




 −





= KEAF

0
0 ln)( ρ

ρρ    (2.5) 

where A and K are the only parameters to be determined.  Though the modified form (2.5) helped to 
resolve the problems they encountered with Li, it ran into problems again later with bcc V [11]. 
 Because of the problems stated above and the deficiencies in the MEAM already noted by Baskes 
[4], coupled with the fact that the Standard EAM is incapable of handling materials for which the Cauchy 
discrepancy is negative, we pursue a completely different approach in this paper.  We pursue our 
investigations within the EAM and adopt a simple form for the atomic electron density ρ(r), as can be 
found in various versions of the EAM [16, 17].  However we have generalized the work of Yuan et al [10, 
11] as far as the embedding function F(ρ) is concerned, by seeking a more flexible embedding function, 
in a sense to be made more precise in the next section. 
 
3.0 Construction of more flexible embedding functions: Generalized Model 
 In our view, the problem with the embedding functions (2.1 -2.5) in the previous Section is that 
they lack flexibility.  We illustrate this point by focussing on the functional form (2.5), which yields, at 
the equilibrium density ρ0, the values  
    KEAF 00)( −=ρ      (3.1) 

    ( ) 000 1)( ρρ KEAF −=′     (3.2) 

    ( )
2
0

0
0

ρ
ρ E
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where a prime denotes differentiation with respect to ρ. 
 In the Standard EAM [2], the Cauchy discrepancy is given by 

    ( ) 0
2

1104412 Ω⋅′′=− VFCC ρ     (3.4) 

where Ω0 is the volume per atom. 
In solids for which C12 > C44 , F″(ρ0) must be positive definite, but in solids where C12 < C44 then F″(ρ0) 
must be negative.  The embedding functions used in various EAM studies do not have this flexibility. 
 It is clear that the function given by equation (2.5) satisfies a second order linear differential 
equation of the form 
 
 



Journal of the Nigerian Association of Mathematical Physics, Volume 9, (November 2005) 
On the embedded atom  method  A. A. Oni-Ojo, E. Aghemenloh and J. O. A. Idiodi J. of NMAP 

    0
1

22

2
=+−

ρρρρ
F

d

dF

d

Fd
    (3.5) 

In order to accommodate as many different embedding functions as possible into the same class, we 
immediately generalize (3.5) to the form 
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where  γ1 and γ0  are parameters that can be determined.  One solution to (3.6) is the generalized form of 
(2.5), which is  
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The condition for (3.7) to be a solution of (3.6) is that 
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That is,   
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The function defined by (3.7) is clearly a four parameter model for the embedding function and the 
parameters are A, K, α and λ or F(ρ0) ,  K, α and λ.  E0 is the negative of the cohesive energy per atom 
for the material being studied, and is thus a known physical quantity.  From (3.7) one gets for the 
generalized embedding function the results 
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where a prime denotes differentiation with respect to the electron density ρ.  F(ρ0), F′(ρ0), and F″(ρ0) 
must be chosen to satisfy the EAM equations [2].  By demanding that the model correctly reproduce the 

monovavancy formation energy fvE1 , which is given, for bcc metals, by  

   ( ) 0001 7
8

7
8 EFFE f
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= ρρ     (3.11) 

we see that we have just enough conditions to completely determine the generalized embedding function 
F(ρ) , given by (3.7). 

 Infact, the monovacancy formation energy fvE1  is correctly reproduced by (3.7), provided α 
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and λ together satisfy the equation 
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In the next Section we shall test out the theory sketched here, on body-centred cubic Lithium and 
Vanadium. 
 
4.0 Application of Generalized Model to bcc Lithium (Li) and bcc Vanadium (V). 

4.1.1 bcc Li 
 The model parameters for bcc Li, as given by Yuan et al [10], are A = 0.87, K = - 1.3933, E0 
 = 1.65eV, with  

     

( )
( )
( ) 









=′′

=′
=

2
00

00

0

4355.1

4356.3

0001.2

ρρ

ρρ
ρ

eVF

eVF

eVF

    (4.1) 

 We show in Table 1 various pairs of α and λ that satisfy equation (3.12) and we see that the 
 pair α = 0.76 and λ = 1.0784 also reproduces fairly well the solution (4.1) of Yuan et al [10]. 

4.1.2 bcc V 
 The model parameters for bcc V, as given by Yuan et al [11], are A = 1.0000 , K = - 0.4629, 
 E0 = 5.30eV, with 
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 We show in Table 2 various pairs of α and λ that satisfy equation (3.12).  We are unable to 
 find a pair that will yield the values of ( ) ( )00 ρρ FandF ′′′  as given in (4.2). 

Table 1: Model parameters of the generalized embedding function F(ρ) for bcc Lithium that will predict a 

monovacancy formation energy FvE1  of 0.495eV and F(ρ0) = 2.0001eV 

 
αααα λλλλ ( ) [ ]00 ρρ eVF ′  ( ) [ ]2

00 ρρ eVF ′′  

0.1 1.5727 3.2890 2.1093 
0.3 1.4263 3.2834 2.0140 
0.7 1.1247 3.2544 1.5361 
0.76 1.0784 3.2479 1.4313 
1.0 0.8903 3.2162 0.9252 
1.2 0.7298 3.1823 0.3975 
1.33 0.6230 3.1564 0.00 
1.4 0.5659 3.1415 -0.2266 
1.6 0.3982 3.0932 -0.9467 
2.0 0.0512 2.9734 -2.6741 
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Table 2: Model Parameters of the generalized embedding function F(ρ) for bcc Vanadium that will predict a 

monovacancy formation energy FvE1  of 2.1 eV and F(ρ0) = 2.45337eV 

 
α λ ( ) [ ]00 ρρ eVF ′  ( ) [ ]2

00 ρρ eVF ′′  

0.1 2.3250 6.2341 9.4927 
0.5 1.3778 6.0302 5.9292 
0.7 0.8551 5.8078 2.3307 
0.8 0.5794 5.6614 0.0752 
0.803 0.5706 5.6565 0.000 
0.81 0.5512 5.6454 -0.1670 
0.9 0.2931 5.4892 -2.4818 
1.0 -0.0045 5.2890 -5.3365 
1.5 -1.7010 3.7769 -23.7240 
2.0 -3.8979 1.0370 -46.3969 

 
This explains why the model of Yuan et al [11] is unable to correctly predict the experimental vacancy 
formation energy of 2.1eV for Vanadium. 
 It is clear from Tables 1 and 2 that the curvature of our generalised embedding function, i.e. 
F″(ρ0) , admits both positive and negative values. 
It is therefore possible to use the model to treat materials like Cr, Sr, and Ir[21] that have C12 < 44. 
 
5.0 Conclusion 
  We have successfully generalized the works of Yuan and co-workers [10, 11] as far as 
the embedding function is concerned.  Apart from its overcoming the problem encountered by Yuan et al 
[11] for V, the generalized four-parameter embedding function is flexible enough to handle materials for 
which the Cauchy discrepancy is negative. 
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