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Abstract

One striking factor that attracts problem solvers to use particular algorithm is
its convergence behavior. In this paper, the convergence of the iterates
generated by the ECGM for DOCP as proposed by [14] is examined.
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1.0 Introduction

Since the early fifties when the Conjugate Gradient metrasidiscovered independently by [5]
and [21]; and shortly thereafter, when they jointly published véhadnsidered the seminal reference on
CGM [6], there have been lots of improvement on this methodva@hieus improvements in literature
today are accompanied with convergence analysis or properties ofidthod of conjugate Gradients.
Among these are [1], [2], [9], [10], [11], [14], [15], [16], [19], [2&hd [22]. However most of these
discussions were convergence estimates, which depend on values, whiehiegrguesses [17].

The quest for further improvement on the CGM led to the extemditime conjugate Gradient
method to handle optimal control problems. Several authors have directesfftnes, towards the design
and analysis of new algorithms. Among these are [7] and [8]. [16]ajmetla suitable ECGM algorithm
for discrete optimal control problems, which is actually a nicatibn of the basic philosophy of the
ECGM for continuous problems, due to [8].

In presenting the proof of the convergence of the ECGM algorithfd®CP [16] considered the
function

E(2)=<(z-2),H(z-2)> *)
From (*) the author asserted that

E(z) =< (z.—2), H(& )> (**)

and from (**) drew the similarity relation that
E(Z}+1) = <Zy1— 2%, HZu> (***)

A simple comparison of (*) and (**) and (***) shows that thecerd term in the inner product of (**)
and (***) does not conform with that in (*). This has obscured the beautysgbrbof.
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It is therefore the desire of the authors of this paperdsent the proof of the convergence of the
ECGM algorithm for DOCP using the energy norm in place ofabeve function and when this is
applied it is obvious that presentation looks sharper and betteichieve our goal therefore, we shall
consider the constrained discrete optimal control problems of the type

k
Mimmize j(x, u) = z[xiTPxi + Ui’ QU; (1.1)
i=0
Subject to X;j = CXj-1 +DUj_1,i=12...,k (1.2)

T

where X :(xl, x2,...,xn) U :(ul, u2...un)T are the state and control vectors respectively

X U R, u U R™ P,Q,C and D are constant matrices; wit® and Q symmetric and positive

definite. In adopting a penalty optimization technique for the abovdéemolil 6] proposed the Extended
conjugate Gradient Method by linking equations (1.1) and (1.2) with the mpérator H such that

Min J(x,u) = Min(z, H2),
(x,u) (x,u)
.. [ T T
= (X'S)Zixi PX +u; Quj +#(x —Cx-1Duj1,% ~Cx-1~Dui-p)|  (1.3)
)=
with z = (XO,xlxz,...,Xk,uo,ul,uz,...,uk),where¢(¢ > O) is a penalty constanty is a real Hilbert
space and the symbd|[,[} is the usual inner product defined on the Hilbert space infaime

{x,y) =X"y wherexand y are column vectors of same dimension.
We shall examine the sequence of iterafg$ from the ECGM algorithm for DOCP. The

ECGM algorithm for DOCP is as follows:
Step 1: Choosezy = (xo, uo)T from w, with X, given.

Step 2: Fori =0,
Computeh = - Hz (1.4)
o = Ha. Hz) (1.5)
(R, HR)

Z« =7 tah (1.6)
Hz .1 = Hz + ajHh (1.7)

, _ (HZ41,HZ4p) »g
g (Hz,Hz) 9
hi1 = - Hz4 + G (1.9)

Step 3 If h,, = 0,0r i =k, Go To step 4
Otherwise set =i +1 and go to step 2
Step 4. Stop and ser = (x*,u*).
In section two of this paper, we shall consider some essdobls that will enhance our

understanding of this analysis. Some of these tools like theneymn and positive definiteness of the
matrix operatorH have been discussed in [15], [17] and [18].

Sections three and four dwell on the main thrust of this paper and tHestomecespectively.
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2.0 Basicconceptsand Lemma.
The quadratic formf (z) is simply a scalar, quadratic function of a vector with the form

f(2) =%ZTAZ—bTZ+C (2.1)
where A is a matrix,z and b are vectors, and is a scalar constant.
Definition
The gradient of a quadratic form is defined by
9 £(2)
621
9@
f'(z)=| 02, (2.2)
_9
92, (2) |

The gradient is a vector field for a given pointand indicates the direction cff(z).
Definition

The errorg = z — Z is a vector that indicates how faris from the solutionz* . The residual
ri =b— Az indicates how farAz is we are from the correct vall®. We know thatr; = —Ag and our
thought of the residual should be the error transformed\byr any operator into the same spacéas
More importantly,r; = —f'(zi) and so we should always think of the residual as the searctiatirer
direction of the gradient descent. We shall henceforth dendtg h,, the ith search direction of the
gradient descent.
Definition

A line search is a procedure such as that in equation (1.6xHbasesq; to minimizes f (z)
along a line. The value af; , the step length will ensure decrease of the iterates.
Definition [23]

A sequence[zi} from an iterative scheme is said to converge super linéahd only if for the

Euclidean norrd e |, we have
&+ T L
Lim B 2.3)
e
ask - oo,
Definition
The energy norm [3] is defined as | ef , = (eT Ae)}é (2.4)

where A is the matrix operator. Minimizinfg ||A is equivalent to minimizingf (z).[3]
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Definition [13]

An iterative scheme is R-superlinearly convergentHZﬁ—Z*HS(Cn)nHZ*—ZOH, where

Lim C,=0 and{zn} is the sequence of approximation of the solutdrirom an arbitrary initial

n-o
approximationzg.

Lemma 1 [14]
Under the conditions of equatidgh.3), the functional inequality

3
[ 1R8] fzo] 2 ha] (2.5)

holds at each minimization step of the Extended conjugate Gradient Method for solving Discrete
Optimal Control Problems
Proof:

Recall from equation (1.9), that

h =/f-1hq - Hz (2.6)
By taking the inner product df and Hz , (2.6) becomes
(h, Hz) =(Fah-1-Hz ,Hz) = 54 (K1, HZ) - (Hz, HZ)

But(h_1,Hz) = hT_l hz =0, sinceh_; and z are orthogonal [17] and [20]. Hence

(h. Hz) = ~(Hz , Hz) = - [Hz|’ @7)
Since H is symmetric [16],
(hy, Hz) =(Hh,z) (2.8)
From equation (1.6), we have
i-1
z =275+ ) ajh (2.9)
j=0

Put (2.9) into (2.8) and bearing in mind ti&th, hj) = 0,0 i # j, we have,

i-1
(HW,z) =(Hh,zg + > ajh)
j=0

i-1
=(HR, zp) + > a;j(Hh, h))

=0
=(Hh, 7p) . (2.10)
O (Hh,z) = <(h,Hz) = (Hh, zy) (2.11)
Next put (2.11) into (2.7), we hawgih , z5) = —||Hzi||2,which yields,
2
[HR [ |zo] == [Hz|". (2.12)

Take the norms of equation (2.6)
[ = 8-2 b - Hal 2[A-1 0] - [Ha]
|| = [B-1 h-a]| ==[Hz]. This clearly indicates that
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]2 - [Hz] (2.13)
Combining (2.12) and (2.13), we have

3
][ 1A |zo] = [ Hz]

which completes the proof of the lemma.
In the next section, we present a proof similar to that of [18], but firgtlgtate the theorem.

3.0 Theconvergence analysis
Theorem

Suppose that the sequence of iterz{tza,§ is generated by the Extended Conjugate Gradient

Method for Discrete Optimal Control Problems with an arbitrasiglectedzy W , then the

sequence converges and converges R-superlinearly.
Pr oof

Let z = (xI » Uj )T, where X;,and u; are the state and control vectors specified in equation

(1.2), be the iterates from the ECGM algorithm. pet= (x*,u*)-r denote the value of the control vector

with its corresponding trajectory at optimum. Using the enexgyn, | q+1||2H where H is the matrix
operator in equation (1.3), we have,

||Q+1|||2_| = (Q+1)T He 11

=(q +aih)" Hig +aih) (3.1)
= qTHq + 20 hTHq + aiZhTHh

2
:”q”2H + 2<Hzi1HZi> (_hThi)_'_((Hzi’HZi)J hTHh

(. HR) (h,HRy)
=|al? - <<I_:' HH;>> (h h) (<<th' ’&Zﬂz hHR  (3.2)
el - 2 E0 1 g o T
- aff, - e
=]l {1- <h,<:r?>' j:%liqj (3.3)

From the comparative idea of equation (1.6) and = g + ajhy, (3.3) becomes,

2 2 (Hz,Hz)?
o2, =lel2 [1— 2. } o

(hy,Hhy) (z,Hz)
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But

i-1
(%, Hz) =(zp+ Y ajhj,Hz)

j=0
i—1
=(29,Hz) + . aj (hj,Hz)
j=0
=(zy9,Hz) since(hj,Hzi> =0 Oi#j. (3.5)
Also (zy,Hz) < /{Zy,Hz)/ holds trivially for all zy and Hz and by the Schwarz's inequality,
(20,Hz) < |20 [Ha] (36)
Using (3.5) and (3.6) in (3.4), we have
2
2 _1el2 |1 - (Hz.Hz)
l&+ally =< [l { (hy, HR) [Ha ] ]
[ 2
“Jol 1 - e
"I sl Hn]HaE] (2l
Ha
“Jel? |2 o @
H 1" TR [HR | Teol
lesliy <lalfy @2 (38)
. 1l
if wr=1 -9 (3.9)
[y [ IHR o]
&+ <y
]
Z1 =7
-y 7/ (3.10)
i
) ‘Zk+1—Z*
Taking limit of (3.10) I(le sup —— — Oas k - o, the LHS tends to zero if
- 7 —Z
3
[Hal™ .
< 1. This shows that the sequer{(z?} of iterates generated from the ECGM for DOCP
][ 1A | zo]

converges super linearly.
Furthermore from (3.8) and (3.9) we hale| < ¢; |le||. By settingC;j — ming; we can see that
i1
(ci )' < 7T ¢ such that
j=0
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&l < (c) ol (3.11)

13
The status of equation (3.9) from the foregoing it is obviouTQﬁﬁ <1 holds for each step
RIHA 2ol

n of the ECGM algorithm. Thus with largec; — Oie lim C; =0 the end of the proof of the theorem.

4.0

| - 00

Conclusion
We have in this paper through the lemma and equation (2.4) showmehsequencéa}of

iterates generated by the ECGM algorithm for DOCP comgesgperlinearly t@ the optimum value.
We have also shown that the ECGM algorithm converges R—supdylingarg the energy norm. The
proof obtained through this approach is sharper and better than that by [18].
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