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  Abstract  

One striking factor that attracts problem solvers to use particular algorithm is 
its convergence behavior. In this paper, the convergence of the iterates 
generated by the ECGM for DOCP as proposed by [14] is examined. 
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1.0 Introduction  
Since the early fifties when the Conjugate Gradient method was discovered independently by [5] 

and [21]; and shortly thereafter, when they jointly published what is considered the seminal reference on 
CGM [6], there have been lots of improvement on this method. The various improvements in literature 
today are accompanied with convergence analysis or properties of the method of conjugate Gradients. 
Among these are [1], [2], [9], [10], [11], [14], [15], [16], [19], [21] and [22]. However most of these 
discussions were convergence estimates, which depend on values, which are mere, guesses [17].  

The quest for further improvement on the CGM led to the extension of the conjugate Gradient 
method to handle optimal control problems. Several authors have directed their efforts, towards the design 
and analysis of new algorithms. Among these are [7] and [8]. [16] developed a suitable ECGM algorithm 
for discrete optimal control problems, which is actually a modification of the basic philosophy of the 
ECGM for continuous problems, due to  [8]. 

In presenting the proof of the convergence of the ECGM algorithm for DOCP [16] considered the 
function  

E(z) = < (z – z*), H(z - z*)>    (*) 
From (*) the author asserted that   
 
     E(zn) = < (zn – z*), H(zn )>   (**) 
 
and from (**)   drew the similarity relation that   
     E(zn+1) = <zn+1 – z*, Hzn+1>   (***) 
 
A simple comparison of (*) and (**) and (***) shows that the second term in the inner product of (**) 
and (***) does not conform with that in (*).  This has obscured the beauty of this proof. 
 
____________________ 
*Corresponding author 
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 It is therefore the desire of the authors of this paper to present the proof of the convergence of the 
ECGM algorithm for DOCP using the energy norm in place of the above function and when this is 
applied it is obvious that presentation looks sharper and better. To achieve our goal therefore, we shall 
consider the constrained discrete optimal control problems of the type 
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conjugate Gradient Method by linking equations (1.1) and (1.2) with the matrix operator H such that  
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with ( ) ( )0,,,,,,,,, 2102,10 >= ϕϕwhereuuuuxxxxz kk KK  is a penalty constant, w  is a real Hilbert 

space and the symbol ∗〉〈∗,   is the usual inner product defined on the Hilbert space in the form 

yxy,x T=〉〈  where yandx  are column vectors of same dimension. 
 We shall examine the sequence of iterates { }iz  from the ECGM algorithm for DOCP. The 

ECGM algorithm for DOCP is as follows:  

Step 1: Choose ( )Tuxz 000 ,=  from w , with 0x given. 

Step 2: For ,i 0=  

   Compute ii Hzh −=        (1.4) 
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iiii hHzh β+−= ++ 11       (1.9) 

Step 3: If ,kior,hi ==+ 01  Go To step 4 

  Otherwise set 1+= ii  and go to step 2 

Step 4:  Stop and set ( )*** ,uxz = . 
In section two of this paper, we shall consider some essential tools that will enhance our 

understanding of this analysis. Some of these tools like the symmetry, and positive definiteness of the 
matrix operator H  have been discussed in [15], [17] and [18]. 

 
 Sections three and four dwell on the main thrust of this paper and the conclusion respectively.  
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2.0 Basic concepts and Lemma.  
The quadratic form ( )zf  is simply a scalar, quadratic function of a vector with the form 

( ) czbAzzzf TT +−=
2

1
      (2.1) 

where A  is a matrix, bandz  are vectors, and c  is a scalar constant. 

Definition 
The gradient of a quadratic form is defined by  
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The gradient is a vector field for a given point z  and indicates the direction of ( )zf . 
Definition 

The error *zze ii −=  is a vector that indicates how far iz is from the solution *z . The residual 

ii Azbr −=  indicates how far iAz is we are from the correct value b . We know that ii Aer −=  and our 

thought of the residual should be the error transformed by A  or any operator into the same space as b . 
More importantly, ( )ii zfr ′−=  and so we should always think of the residual as the search direction or 

direction of the gradient descent. We shall henceforth denote it by ih , the ith search direction of the 

gradient descent. 
Definition 

A line search is a procedure such as that in equation (1.6), that chooses iα  to minimizes ( )zf  

along a line. The value of iα , the step length will ensure decrease of the iterates.  

Definition [23]  
A sequence { }iz  from an iterative scheme is said to converge super linearly if and only if for the 

Euclidean norm • , we have  
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as ∞→k . 
Definition 

The energy norm [3] is defined as  ( ) 2
1

Aeee T
A

=    (2.4) 

where A  is the matrix operator.  Minimizing 
Aie  is equivalent to minimizing ( )zf .[3] 
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Definition [13] 

 An iterative scheme is R-superlinearly convergent if ( ) 0
** zzCzz n

nn −≤− , where 

{ }nn
n

zandCLim 0=
∞→

 is the sequence of approximation of the solution *z from an arbitrary initial 

approximation 0z . 

Lemma 1 [14] 
 Under the conditions of equation (1.3), the functional inequality  

    
3

0 iii hzzHhh ≥     (2.5) 

holds at each minimization step n  of the Extended conjugate Gradient Method for solving Discrete 
Optimal Control Problems.  
Proof: 

 Recall from equation (1.9), that  
    iiii Hzhh −= −− 11β      (2.6) 

By taking the inner product of ii Hzandh , (2.6) becomes 
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Since H is symmetric [16],  
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From equation (1.6), we have  
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Put (2.9) into (2.8) and bearing in mind that jihHh ji ≠∀=〉〈 ,0, , we have, 

   〉+〈=〉〈 ∑
−

=

1

0
0,,

i

j
ijiii hzHhzHh α  

        ∑
−

=
〉〈+〉〈=

1

0
0 ,,

i

j
jiji hHhzHh α  

        〉〈= 0, zHhi .     (2.10) 

〉〈=〉〈=〉〈∴ 0,,, zHhHzhzHh iiiii    (2.11) 

Next put (2.11) into (2.7), we have 
2

0, ii HzzHh −=〉〈 , which yields,  
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Take the norms of equation (2.6) 

   iiiiiii HzhHzhh −≥−= −−−− 1111 ββ  

iiii Hzhh −≥− −− 11β . This clearly indicates that  
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     ii Hzh −≥       (2.13) 

Combining (2.12) and (2.13), we have  

    
3

0 iii HzzHhh ≥    

which completes the proof of the lemma.  
In the next section, we present a proof similar to that of [18], but firstly we state the theorem.  
 
3.0 The convergence analysis  
 Theorem 
 Suppose that the sequence of iterates { }iz  is generated by the Extended Conjugate Gradient 

 Method for Discrete Optimal Control Problems with an arbitrarily selected Wz ∈0 , then the 

 sequence converges and converges R-superlinearly. 
Proof 

Let ( )Tiii uxz ,= , where ii uandx ,  are the state and control vectors specified in equation 

(1.2), be the iterates from the ECGM algorithm. Let ( )Tuxz *** ,= denote the value of the control vector 

with its corresponding trajectory at optimum. Using the energy norm, 
2
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operator in equation (1.3), we have, 
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From the comparative idea of equation (1.6) and iiii hee α+=+1 , (3.3) becomes,  
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But 
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Also /,/, 00 〉〈≤〉〈 ii HzzHzz  holds trivially for all 0z  and iHz  and by the Schwarz's inequality,  

    ii HzzHzz 00 , ≤〉〈      (3.6) 

Using (3.5) and (3.6) in (3.4), we have  
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Taking limit of (3.10) 0sup
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i . This shows that the sequence { }iz  of iterates generated from the ECGM for DOCP 

converges super linearly. 
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The status of equation (3.9) from the foregoing it is obvious the 1
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i Cieci  the end of the proof of the theorem. 

 
4.0 Conclusion  
 We have in this paper through the lemma and equation (2.4) shown that the sequence { }iz of 

iterates generated by the ECGM algorithm for DOCP converges superlinearly to *z  the optimum value. 
We have also shown that the ECGM algorithm converges R–superlinearly using the energy norm. The 
proof obtained through this approach is sharper and better than that by [18].  
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