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Abstract

In this research work, we consider the one dimensional hydrodynamic
dispersion of a reactive solute in electroosmotic flow. We present results
demonstrating the utility of finite element methods to simulate and visualize
hydrodynamic dispersion in the electroosmotic flow. From examination of
concentration profile, effective diffusion coefficients were numerically
determined for different peclet numbers. Our result shows close
approximation to analytic solution.
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1.0 Introduction

Chromatographic separation using electric fields to drivetrelesmotic flow are usually
performed in packed columns. The role of the packing is to pravithrge surface area for solute
adsorption and thereby to improve column performance. However, recaricad in manufacturing
methods now enable the fabrication of electrochromatographic colwirgy characteristics transverse
dimensions in the micron to submicron range.

Axial dispersion is important in chromatographic process becatesed# to spread the solute peaks. As a
result, closely packed peaks cannot be resolved when dispersionssiexcEstimating the magnitude of
the dispersion and identifying the conditions leading to minimum digpe are thus important to
optimizing the process.

As a solute is converted in open column transverse variatiotiseirvelocity field produce
transverse variations in the solute concentration. At the same transverse diffusion tends to reduce
induce concentration gradients. At sufficiently late timaagport in the axial direction is just balance by
diffusive transport in the transverse direction. This is the phemomef hydrodynamic dispersion. Such
dispersion yields a mean axial profile of the solute concentrtitains consistent with diffusive transport
alone, although the apparent diffusivity is larger than the actual value.

Various forms of (I.I.I) has been solved by various redeas for various boundary conditions.
Bear (1979) [2] provides some analytical solutions for the oneerional case using the laplace
transform.

Varoglu (1982) [10] applied a finite element model for the diffusconvection equation with
application to air pollution. (Hromadkall and Guymon (1982) [6]thsenodal integration model to solve
the one dimensional advection diffusion problem. Barker (1982) also solved tref sakée transport in
fissured aquifer using the method of laplace transform. TimMwostaghimi (1989) [9] used the finite
element to analyse the one dimensional form of the transport pekst€ides and their metabolites in the
unsaturated zone. But the problem of flow of solute in an eleotwas flow has only been treated
sparingly for example Griffiths and Roberts (2002) [4] considelhedcase of a non-reactive neutral
solute using the method of asymptotic series solution. The differeetween the above literatures and
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ours is that we are considering the problem of the flowrefaative solute.in electroosmotic flow which
involves solving three partial differential equations simeétzusly. In this paper we applied the finite
element solution to the time dependent problem to determindféot ef the dispersion coefficient for

various times.

2.0  Governing Equation
In this research work we consider the flow of a two dimensiplamar transport of a reactive
solute in an electro-osmotic flow. The flow is assumed to be inassitle and transport properties are
assumed constant. Under this restriction the time dependent conoerfigddi is governed by
2
9 _ x4+ py9C_u % i 2.1)
ot axz ayz ox

Where C is the local solute concentratidnis the time,u is the local fluid velocityDx, Dy are the

coefficients of hydrodynamic dispersion in tleand y direction respectivelyd is the rate of chemical

reaction.
Further assuming that flow is steady and that inertial &ffaie small, the momentum equation
may be written as
0%u 9% _ 19
i = Lo9 2.2)
xc 9y M OX
Where u is the viscosity/ is the net local charge density, apds the local electric potential.

Finally, for a dielectric constant that does not vary with position the poison equation governing
the electric field is:

SY)
AS)

2 2 _
6_20+_ = _f
ox y U
and the local charge density may be related to the ieldatid potential through the Boltzmann
distribution given by:

(2.3)

(3]

¢ = —2FZCeSinh(ZF ¢/RT)
where F is the Faraday constard, is the ion charge numbege is the bulk fluid ion concentratioR
is the universal gas constant ahds the temperature.

3.0  Solution of the one-dimensional contaminant dispersion problem.
Consider the one dimensional contaminant dispersion equation
oc 0%c oc
—=D—-U—+Ac (3.1)
ot axz ox
together with the following boundary and initial conditions

C(x,0)=0
Clot)=Cy, (3.2)
c(Lt)=0
Let
cle) = S NE(x)c(t) (3.3)
where N; = A7 X and N; = XA are the linear Lagrange interpolating functions. Suppose
Xi+1~ X Xi+1 X
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thatU,, C,, and ¢, are some approximate solutions Huebner[5] the Galerkin procedure appi@teat
i of an isolated element becomes

(e) 2c(e) (e)
[N [agt -D aaiz +U, agx —AC(e)(t)J dx =0 (3.4)
= (N (aN(e)c(t) b a2N(Ec() ‘U, anEc() —/ln(e)C(t)} x=0 (35
ot 6X2 0x
2 aC(t 92N an () .
:j{NiN( )%—DNiyc() UnN; —Cft)- AN;N( )C(t)}dxzo (3.6)
= [N; N aca:t( t) g - D[N; 6';)((6) clt)- %_agie) C(t)dx

+Uq [N ar(\;ie) cllx-A[NiNEctlx=0  (=7)

= [N, N(e)af;—t(t)dx+ Dj%.ag—(e)c(t)

X X

+Un [N, N clax-A[NNCIc)x=0  (3.8)

Integrating (3.8) betweer i and X, we have
J-xk[Nij NJNq cl(t) x+ D[ NING  NENG | () U J.xk NN NYN
Xj [NkNj NN | cf(t) XjINENSONENE | [ Chl) NkN/ NAN/

e 2 e

Xj| NkNj NgNg | | Ciet)
Carrying out the necessary integration and differentiation we have
L_elej+21 - Cj+h—11C ALe[2 1| C; 0 (310)
6|11 2| - Le|-1 1 |Cg 2 1-1 1|Cy 6120k

Cx
We shall now proceed to sum up the element equationg Forxj < Xk to give

210G 1—1qu—110q 1 -1 0]G
L141(;j +Plq 2 -1|CG |+2|-1 0 1|G; A& -1|Cj|=0  (3.11)
012 0 -1 1|G 0 -11|G 0 -1 1|G

(0%

Journal of the Nigerian Association of Mathematical Physics, Volume 9 (November 2005)
Hydrodynamic dispersion of a reactive solute O.T. Gideon and Y. M., Aiyesimi J of NAMP



210G 1 -1 0][G -1 1 0[G
:>1141(';j +21-1 2 —1g+2-1 0 1g
012|. | %o -11]|g 0 -11|G
i -+ (3.12)
1 -1 0Tq
A1 -1{¢; |=0
0 -1 1]G

which can be written in the form:

e e

(3.13)
Un A _
+ oG+ Gul -{[G1+4G + Gyl =0
TakingLe=nh i.e.
E{Ci 414G FG +1} + _Z[Ci -172G; +G il
h (3.14)
Un A —
+E[_Ci—1+ci+1]_g[ci—l+4ci +Cig)=0
Applying the trapezoidal rule (Segerlind 1976) we obtain the Crank Nicolstol¥e
{1— 3rD - g U - %}c{l{l +[4+6rD - 2kA|c"*?
+(1—3rD +gr0Un —%jci”_*ll
= {1+ 3D + 500 M}Ci”_l
2 2
2l K (3.15)
+(4-6rD +2K)CM + [1+ 3D —% +7}c{‘+1
Multiplying through by 2 we shall have
(2-6rD -3rgu, — kA )Mt + (8+12rD — 4k )t
+(2-6rD +3rgU,, kAt
=(2-6rD +3rgU,, + kA)GL
( 0¥n ) -1 (3.16)

+(8-12rD - kA)C" + (1+6rD - 3rgU,, + kA)ClYy

Dk k
which is the difference equation for equation (3.15), whe:e—z, o = UT,k = At andh = Ax.
h
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We also have
o = Corrant number
r = Diffusion number

f
and 9 = pedet number
r

4.0  Solution of the one—dimension momentum equation.
The one dimensional momentum equation is given by

2
9u_ 09 (4.1)
axz ox
together with the following boundary conditions
u(0)=o0
(4.2)
u(L)=u;

We can choose the velocity and Electric potential components as fildlearand apply the
method of weighted residuals with Galerkins criterion. For a genera¢ptatomain we seletd and¢

as nodal variables and interpolate the variables as follb(ﬁ)s= N;U; (X); (Ae) = Ni(q(x) Zienkiewicz

and Taylor [12], Taylor and Hood [8], Yamada et’al [11]; Tim and MostagfniSmith and Ariffiths
[7] Chung [3].
Now applying the Galerkin’'s method as said above we have

jnN{a u —na“’( }dx 0 4.3)

ax oX
on integration by parts of the first term of (4 3) we have
on(e / oN; on(e oN(©)
U-dx—ﬁ Nj ——@ox=0 4.4
N ox J. ox  ox J. ' ox a (44
Integration between the limitg < X < xJ we have
aN©lU [ xi exiaN; oN(E
N, ———| -]} 4.5
'oax (X j><| ox o (4:5)
Since the first term of (4.5) satisfies the boundary conditions we have
RPSNTRPINT () (e)
IXJ oN; ON U, dx +£I Ni oN @ox=0 (4.6)
X 0x  OX Y7
/ I'n/ In!
N N; N N U; N/N:  Ni N
IXJ / dx+£.[ I/ I/ I/ } “ dx=0 4.7)
| NING NING Y] P NGNT NGNS L9

on evaluation of (4.7) we have

o il o)

Summary up the element equations betwger X, < X, we have
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1 -1 07y, -1 1 0fq

L1 2 -1fuif+ -1 0 1)g =0 (4.8)
Le 2u
0 -1 1 |Uy 0 -1 1|¢
which can be written in difference form as
1 V4
—|-U.1—2U; “Ujq|+—|-@_ + =0 4.9
Le[ i-1 i |+1] 2,u[ B ¢i’+1] (4.9

where theg can be determined from the solution of the potential equation

5.0  Solution of the one—dimensional electric potential equation.
The one dimensional electric potential equation is given by
%p 1
99, (5.1)
ox?> O
Together with the conditions

ulo)=
(0)=a 52)
u(L)=0
Given thatqo(e) = N;¢g, we have using the Galerkin’s method
) 2
IXJ Ni a_¢+£ dx=0 (5.3)
X ox O
Integrating the first by parts we have
Xj AN (e) .
N; a—(q —J-XJ ﬂ_@N ¢de+IXJ N; £dX:O (5.4)
OX|y % 0x  OX X 0
Since, the first term satisfies the bou?tilary conditions we have
T e .
—IXJ ﬂ.—aN qqu+J'XJ N; £dx:O (5.5)
X ox  Ox X U
NiN;  NijN; [N;
jxk H e dx—ﬁ 'lax=0 (5.6)
Xj NjNi Nij (01 D_Nj
Evaluating (5.6) we have
1 - 1
1 a0 PR o P (5.7)
le[-1 1] | 20|1
Summing up the element matrk < Xj < X we have
1 -1 0 — 1
1 1 e
—|-1 2 -1 @ |[+—|2|=0 (5.8)
Le 20
0 -1 1|@gn 1
which in recurrence form we have
1 l
=laa-20-gul== (5.9)
12 O
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which is the difference solution to equation (5.8)

0.06 Figure 1: Graph of dispersion against distance/doious times
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6.0 Discussion and summary

From the graph it can be observed that the concentration of thentoaht decrease sharply with
distance for particular times and then steady state is reagtihalsoncentration increases with time. The
effects of oscillations and numerical dispersion which avenngon to finite difference has been
eliminated which is an advantage of the finite element over the fiifference methods.
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