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  Abstract 

 
The discussion focuses on the method of least squares and various tests that 
can be performed to validate the results of the adjustment of gravity 
observations. A system of linear equations was considered for the 
mathematical model to figure out the relation between the observables 
(observed quantities) and the parameters (wanted parameters). Standard 
deviations and variances associated with the observations, and the covariances 
between the observations were used to build up the weight matrix. A test of the 
model was performed using relative gravity measurements at stations in 
northwestern Nigeria. The adjusted results in the estimated values of gravity 
for all stations, together with their accuracy estimates, tally with known 
absolute gravity values in the area.  
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1.0 Introduction 

 A least-square adjustment of survey observations is an important step in a gravimetric survey. 
Properly used, it helps isolate blunders in the observations being adjusted and gives the accuracy and 
reliability of the gravity values being determined. The primary components of a least-square adjustment 
are the survey observations (in this case gravity differences) and the uncertainties associated. Due to 
measurement limitations of the surveying instruments and the influence of the operators, these 
observations include some level of error. These errors cause loops not to close perfectly and result in 
different computed values for the same station in the network (Pennington, 1965) [4]. 
 The ultimate goal of a least-square adjustment is to produce a set of observations where all loops 
close perfectly and only one value can be computed for any point in the network. In order to accomplish 
this task, the observations going into the adjustment must be changed slightly, i.e. adjusted. Of course we 
do not want the observations to be modified too much, since this is what was physically observed in the 
field. But the observations do contain some level of error. Any error associated with an observation is 
predictable because of the measurement accuracy of the instruments used. A successful adjustment is one 
where observations are changed as little as possible, and the amount of adjustment to any observation is 
within expected levels. 
 Unfortunately there are a number of obstacles that can stand in the way of producing a successful 
adjustment. Primary on this list are blunders, errors in the observation due to equipment malfunction or 
operator error (incorrectly measured instrument height, insufficient data, wrong station identifier, etc.). 
Tools exist to assist in overcoming these obstacles, both before and during the adjustment. The analysis 
tools are mostly statistically based, as a result, it is very important that uncertainties (error estimates) are 
realistic. At times, these uncertainties may be little optimistic (too small) or pessimistic (too large). 
Methods exist to help identify when uncertainties are unrealistic and to help rectify this situation. Also, 
adjustment analysis tools cannot function properly without redundancy in the observations. This must be 
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borne in mind when designing a survey network. A certain percentage of points should receive multiple 
observations.  
 
 
 
2.0 The mathematical model 
 Consider the system of linear equations f (X, L), or in, matrix form: 
     AX = L      (2.1) 
where X is the unknown vector, L is the constant vector, and A is the coefficient matrix or design matrix.  
Let’s assume that the elements of L are the results of physical measurements, L is called the observation 
vector. 
 In the case where there are no redundant equations (minimum number of measurements), A is 
square and non-singular, and therefore has an inverse. The unique solution is then given by X = A-1L. 
When there are redundant equations, the system is over determined: A is not square, but ATA is, (Mikkhail 
and Ackerman, 2000) [2] and the mathematics tells us that 
     X = (ATA)-1ATL 
This is so if and only if the system is consistent. But if there are redundant measurements, they will be 
inconsistent because physical measurements are never perfect. We have to assume that there were errors 
in the determination of the observations. This leads us into the theory of errors and statistics. An 
adjustment becomes necessary when the data available exceed the minimum required for unique 
determination. 
We must first get rid of systematic errors (for instance the lengthening of the gravimeter spring) and of 
blunders (gross errors). The way for accounting for systematic errors and intercepting blunders are 
numerous and we are not going to venture into this here. Even after eliminating those errors, we still have 
an unavoidable spread in the observations, and we say that the observations contain random or accidental 
errors. To account for this we have to refer to statistical concepts. 
 No unique solution will exist, and all we are able to do is make a unique estimate of the solution. 
The most commonly used criterion for the estimate to be unique is the least squares criterion; that the sum 
of the squares of the inconsistencies be minimum.  Using statistics, we are also usually able to establish 
the degree of reliability of the solution, and thus define the most probable unique solution. 
 To cancel the inconsistencies, we add a vector to equation (2.1), which becomes: 
     AX – L = V     (2.2) 
where V is usually called the residual vector (observation errors). The elements of V are not known and 
must be solved for. So we have to allow some of or all the elements of L change slightly while solving for 

X, or regard L as an appropriate value of some other value 
∧
L  which yields the unique solution 

∧
X . Now 

the least squares criterion states that the best estimate
∧
X  for X is the estimate, which will minimize the 

sum of the squares of the residuals (discrepancies between observations and estimated values assigned to 

each observable), that is VVT ˆˆ  is minimum. 

 The estimated
∧
X  so determined is the least squares estimate.  The difference between the 

observed value and any arbitrarily assumed or computed value is called the misclosure, which is different 
from the residual (uniquely determined by the difference between the observation and the sample mean). 
 The limitation to this method is that we have to assume that the parameters are mutually 
independent, and to postulate a normal probability distribution function for the random errors. 
Often the physical measurements which make up the elements of L do not all have the same precision 
(they have been made using different instruments by different people, under different conditions etc.). 
This fact should be reflected in our least squares estimation process, so we assign to each measurement a 
known weight and call P the matrix whose elements are these weights, the weight matrix. We modify the 
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criterion, which becomes VPV T ˆˆ  is minimum.  The resulting estimate is called the weighted least squares 
estimate, and is given by 
 
 

     
∧
X = (ATPA)-1ATPL    (2.3) 

where ATPA is the normal equation matrix, and must not be singular for the estimator to be unique. 
 Further complications of the mathematical model arise when the functions involved are non-
linear, but this problem will not be discussed here.  From a practical point of view, the inversion and 
multiplication of large matrices require a considerable number of computation steps. The use of fast 
computers alone allows us to calculate the solutions for large systems of equation where before those 
machines were widespread in use, the task would have been attempted only when absolutely necessary. 
 Let’s assume there are n observations and u unknown parameters. The least squares estimation 
process is applied only when there are redundant measurements, that is, n > u. The number (n – u) is 
called the redundancy or number of degrees of freedom. 
 So far, we have not specified how the weight matrix should be chosen. We are going to use the 
standard deviations and variances associated with the observations, and the covariances between the 
observations, to build up this matrix.  The variance of an observation is larger when it is less accurately 
determined. In combining observations, more importance should be attached to those having smaller 
variances.  One reasonable choice for the weight matrix is thus: 
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in this case, values must be assigned to the variances and covariances in the matrix before a least squares 
estimation can be made. The values arise from knowledge of the measuring instruments and procedures 
being used. The covariance of a pair of observations is a measure of statistical dependence of the two 
values. In practice, the covariances are often assumed to be null in gravimetry because the observation 
values are uncorrelated, but for instance in Global Positioning systems networks adjustments, full 
variance-covariance matrices are often used. 
 It is often possible only to assign relative values among the variances and covariances, so that we 

know ΣL only to within a scale factor, that is if ΣL = Qσ 2
0 , we know the relative covariance matrix Q, 

but not the variance factor σ 2
0 . However we can show that in equation (2.3) the variance factor drops 

out and either weights ∑
−1
L

or Q-1 result in the same estimator. 

 The weight matrix is thus chosen to be proportional to the inverse of the estimated covariance 
matrix of the observations.  If L is postulated to be uncorrelated, it will be a diagonal matrix. As shown in 

equation (2.3), the factor for computing P will not influence the result X̂ .  The weight matrix accounts 
for the fact that the data may be of varying quality. Otherwise we would replace the weight matrix with 

the identity matrix.  It can be shown that the least squares unbiased estimator 2
0σ̂  of the variance factor 

2
0σ  is   

un

VPVT

−
=

ˆˆ
ˆ 2
0σ  
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where ∑
−= 12

0 L
P σ , and that the least squares unbiased estimator of the covariance matrix of X is 

    ( ) 12
0ˆˆ −∧

=∑ PAAX Tσ     (2.4) 

 
Here we are dealing with linear mathematical models. Should the model be nonlinear, it must be 
linearized before the least squares method is applied. 
 
3.0 Data reduction and adjustment 
 Gravity data reduction was performed using various steps (Aku et. al. 2002) [1]. The stations with 
absolute gravity determination provide the anchoring point (fixed points) of the network, while the 
relative measurements provide the ties between the points. 
 When the absolute and relative observations are made and assessed for accuracy, an adjustment 
can be carried out using a least-square adjustment technique. The adjustment results in the estimated 
values of gravity for all stations, together with their accuracy estimates.  The adjustment procedure is 
practically identical with that of geodetic leveling (Poitevin and Ducarme, 1980) [5]. Gravity models 
attempt to describe in detail the variations in the gravity field. The importance of this effort is related to 
the idea of leveling, thus the gravity differences can be adjusted as a leveling network. This is because the 
summation of gravity differences around a closed loop theoretically goes to zero, and this condition can 
then be used as the basis for the adjustment.  The following gravity network was observed.  
 

 
Gravity Difference 
(mGals) 

∆gAB ∆gBA ∆gBC ∆gCD ∆gDE ∆gEF ∆gFC  ∆gCF ∆gFB ∆gFA ∆gFG ∆gGF  
 0.143 -0.143 2..370 

 
1.437 
 

-0.897 -0.414 
 

0.880 
 

-0.779 
 

-0..591 
 

-0.635 1.206 
 

-1.201 

Time between 
stations (Hrs) 

2 2 
 

3 
 

4 
 

2 3 4 
 

4 
 

3 
 

5 
 

6 
 

6 
 

 
Table 1: Observed gravity network 

 
Gravity at point A is supposed known and constant (980100.00 mGal) (Osazuwa, 1985) [3]. The weight of 
each observation is inversely proportional to the length of travel of the line. 
 Using the parametric method of least squares, the gravity of points B, C, D, E, F, and G and the 

adjusted observations L̂  and the residuals V̂  were computed. 
 From the given data, we have a number of observations n = 12 and the number of unknowns u = 6. 
Therefore we have 6 redundant observations (n – u) and 6 degrees of freedom.  The mathematical model is AX = 
L + V.  The 12 independent equations will be: 
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where gA  has a constant value.  Putting equation (3.1) in matrix form, we have 
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 The observations are considered uncorrelated with variances proportional to the corresponding 
travel time between stations. Thus the weight matrix is given as the inverse of the variance-covariance 
matrix of the observations, that is: 
 P = diag (1/2, 1/2, 1/3, 1/4, 1/4, 1/3, 1/4, 1/4, 1/3, 1/5, 1/6, 1/6)  

 The normal equations are N
∧
X  = U, yielding the solution 

∧
X  = N-1U 

The variance-covariance matrix of an estimate 
∧
X  is obtained through the law of propagation of variance 

which states that if z = f(x,y) and if x and y are not correlated, then  
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Thus if 22
2, yxyxz σσσ +=−= ,  where σ is standard deviation. 

 If X is a n-dimensional random variable with covariance matrix Σx, and a new n-dimensional 
random variable Y is computed through  a linear relation Y = AX + B with a constant coefficient matrix A 
and a constant vector B, then the covariance matrix Σy is given by   Σy = A.Σx..A

T . 
 For non-linear relationships of the type Y = f (X) + B, A is replaced by the Jacobian matrix J 
containing the partial derivatives of f with respect to X.  
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 Spreadsheet and a Fortran program was used to compute
∧
X  and obtain the estimates for the 

gravity of points B, C, D, E, F, and G. We find:  
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Note: (980000 mGals to be added to X̂ ).  The adjusted observations are VLL ˆˆ +=  
 
 
4.0 Conclusion 
 For precise gravity surveys, it is both logical and prudent to perform the weighted adjustment 
rather than the equal weight adjustment. Often results of physical measurements do not have the same 
precision since they have been made using different instruments by different persons, under different 
conditions. This fact is reflected in the least squares estimation process. The parametric method of least 
squares remains a reliable tool that greatly assists in overcoming obstacles that can stand on the way of 
producing a successful adjustment. A non-linear mathematical model must be linearized before the least 
squares method is applied. 
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