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 Abstract 
 

In this paper we suggest a tabular structure for maintenance or reliability 
data. Also we propose a cost implication model of a preventive maintenance 
policy in which we included the average cost of downtime of the unit. 
Maximum likelihood and moment methods of estimations are used on some of 
the Exponential Family distributions; to make comparative study of the 
estimators and to demonstrate the application of the models presented with an 
arbitrary sampled data. 
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1.0 Introduction 

In maintenance or reliability problems the Exponential Family Distributions (EFD) plays a 
dominative role in determining hazard rate and or replacement date of units under prescribed policy. This 
is due to the fact that the Family of the exponential distribution have a common characteristic that fits any 
process undergoing steady increase or decrease in its modeling behavior. Distributions such as 
Exponential, Wiebull and Gamma attracted large number of contributors in the area of maintenance 
whenever it comes to the practical realization of their proposed models,. For instance, Phelps (1981) [12] 
used Weibull distribution of time to the failure of a reparable unit to make comparative study of the three 
different maintenance policies proposed by Park (1979) [11], Muth (1977) [10] and Barlow and Proschan 
(1965) [2].  Tango (1978) [13] used Erlang distribution in the paper in which he modified the used items 
replacement policy initially proposed by Bhat (1969). In the replacement policies proposed by Bashir 
(2000, 2001) [3] both Exponential and Weibull distributions where used.  Exponential and or Wiebull 
distribution are also used by authors such as Christer (1984) [6], Lin (1988) [9] and many others in 
making realization of their models. In contrast, the Maxwell distribution is completely overlooked by the 
contributors. Another member of exponential family that is less attractive in maintenance problem is the 
normal density. Perhaps, this is due to its symmetric nature, since in practice it is not feasible to get a 
system or device whose failure-time distribution is normal. In this paper we focus on four members of the 
Exponential family distribution: Exponential, Wiebull, Gamma, and Maxwell distribution. We apply the 
two traditional methods of estimation, the maximum likelihood method (MLE) and Karl Pearson’s 
moment method (MM) to estimate associated parameters of these distributions. We then apply the results 
to a sample data that is provided. Perhaps, the least square method can be of interest, however it is not 
considered in this communication. Friedman and Gertsbakh (1980) [8] discussed the existence and 
properties of maximum likelihood estimators for a minimum-type distribution function corresponding to a 
minimum of two independent random variables having Exponential and Wiebull distributions. We 
propose a tabular form of a maintenance-sampled data in section two to ease real application of some 
models of maintenance. In addition we modify the preventive maintenance policy presented by Cox 
(1982) [7], to incorporate downtime cost of the system. 
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2.0 Structure of a sample Data 

Suppose we have m identically independent observed sample units. Each unit is likely to 
experience a number of defects or failures before a new identical unit replaces it. Also, assume that two or 
more defects could not arise at the time. However, if more than one defect arises simultaneously, we treat 
them under one repair.  Define ijx  (i = 1, 2, …, m and j = 1, 2, …, n) to be the length of time the unit 

operates before failure or repair. Thus, we present our sample observed data as in Table 1, where 
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.  ; j = 1, 2, … , n is the expected working-time of the unit before repair. The mean 

and variance of the working-time before the nth failure are given, respectively as 
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3.0 Estimation of parameters 

Consider the four members of the Exponential family: Exponential Distribution, Wiebull 
distribution, Erlang distribution and Maxwell distribution. We apply the methods of maximum likelihood 
and moment to determine the estimators of parameters of these distributions. 
3.1 Exponential distribution 

p.d.f. ( ) yyf λλ −= l , y > 0     (3.1) 

MLE:
y

1
1̂ =λ       (3.2) 

MM:
y

1ˆ
2 =λ       (3.3) 

Note: Subscript 1 refers to MLE and subscript 2 refers to MM estimator. 
3.2 Weibull distribution. 
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 MM: In this case we find 2b̂ such that 
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And hence we obtain 2â  such that   

   














Γ

=








2

2
ˆ
1

2

ˆ
1

ˆ

ˆ
1 2

b

by

a

b

     (3.7) 

 



Journal of the Nigerian Association of Mathematical Physics, Volume 9 (November 2005) 
Estimators of parameters of the exponential family   Bashir M. Yakasai  J of NAMP 

3.3 Gamma distribution 

p.d.f.: ( ) ( )
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3.4 Maxwell distribution 
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4.0 Empirical study 

Suppose we have a statistical record  of an automobile engine failure-times history, as given in 

Table 2, where ))3(,,2,1)5(,,2,1(; ==== njandmixij LL is the length of time the engine 

operates before jth failure occurs. Next we have that n = 3; 78.22
1

=∑
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n

j
jy ; 02.294

1
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j
jy ; 

593.7=y  and 60.602 =ys .  From table 3, by simple comparison of the sample mean with the mean of 

the distributions, gamma distribution fits our observed data more than any other competing distribution, 
since under MLE and MM it provides better results. Also, under MM the estimators of the parameters in 
all the cases performed well and yielded better result than MLE. In such situation, we suggest that the 
distribution which gives parametric mean closer to the sample mean and having least value of the 
standard error is recommended for the observed data. Therefore, the Gamma distribution under MLE is 
the recommended distribution as for our observed data. 
 
5.0 Maintenance policy 

In this section we consider a simple replacement strategy, that is  
A unit is replaced at planned periods kT, where k=1,2, … and if failure 
occurs before the preventive replacement period, repair is conducted. 

Next define cp; cs (> cp) and cd to present the average costs for planned replacement, repair and per unit 
downtime cost, respectively. Hence, without lost of focus on point process involved in this case, we have 
the expected cost for adopting the above policy (strategy) as 
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)()()()( is renewal function. 
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)(1)( is a cumulative working-time of the system in the interval (0,T) 

Our objective now is to seek for the optimum value of T = T* that minimize C(T). Thus, by taking partial 
derivative of equation (15) with respect to T and equate to zero, we obtain that  
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Where 
dT
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)(
)( =  is a renewal density. To solve equation (5.2) we suggest numerical approximation 

or analytical method.  To make a realization of (5.1) and (5.2) we consider for simplicity sake an 
Erlangian (Gamma) distribution with one stage and a Maxwell distribution.  From the p.d.f of the Erlang 
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which is an in complete gamma function, Tango (1978). Thus for a =1 
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And since H(T) is the expected number of failure in the interval ( 0, T ] then according to Akimaru and 
Kawashima (1993) [1], αβTyETTH == )(/)(  and hence .1)( αβ=Th . Then, equation (5.2) 

becomes    ( )
d
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Thus, the optimum value of T=T* is determined so that equation (19) is satisfied. 
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Optimality existence. 
For the optimal value to exist, we observe that the left hand side of equation (5.5) is nonnegative for all 

,0≥T  and hence, by implication it means that the equality exist only if .
d

p

c

c
≥β  Consider our empirical 

results and suppose cp = 1, cs = 1.25 and cd= 11.75. Then from equation (5.5), 95.2* ≅= eTT  and 

C(2.95) = 0.911 under MLE and 47.3* ≅= eTT  with C(3.47) = 3.354 under MM. These results confirm 

that the estimation method that yields the least standard error is better. provided the methods give the 
same means.   
 The Maxwell distribution is given by 
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The expected value of this mass function is 
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Optimality existence. 
The left hand side of equation (5.8) is nonnegative for value of ,0≥T hence the right hand side also is 
nonnegative only if 
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If the optimality condition is satisfied then we determine T = T* such that equation (5.8) holds. And 
hence the expected cost of the policy is obtain as 
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Consider our numerical results for the Maxwell distribution (under MM) we obtain from equation (22) 
that T* = 5.57 is the more suitable value for that equation. And hence from equation (5.10), C(5,57) = 
1.357. 
 
6.0 Conclusion 

In this presentation we propose a maintenance statistical table for a coherent system failure-times 
history; and we modify the traditional planned replacement policy by taking into consideration the 
downtime cost of the system. Also a survey of the exponential family distributions is conducted to 
determine which of the distributions fits our observed data. The results show that the Erlang distribution 
with maximum likelihood estimators is better with the expected cost of the maintenance policy 0.911 and 
preventive replacement period 2.95.  

 
Table 1: Observed working status of units after repair. 

 
 
Units (i) 

 
Number of repairs (failures) (j) 

 
Total 

1 2 … n 

1 X11 X12 … X1n X1. 
2 X21 X22 … X2n X2. 
: : : : : : 
M Xm1 Xm2 … Xmn Xm. 
Total X.1 X.2 … X.n  

 
Note: n is the number of repairs and m is the number of units (machines). 
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Table 2: Machine failure time history. 
 

 
Machines 

Number of failures or repairs (j) 
1 2 3 

1 17.1 4.8 2.5 
2 15.3 3.0 2.5 
3 18.5 4.5 2,7 
4 15.0 4.9 1,9 
5 16.7 2.8 1.7 

Total 82.62 20.00 11.30 

jy  16.52 4.00 2.26 

 
Table 3: Estimates of the parameters with their means and standard errors. 

 

P.d.f 
 

Parameter 
 

Mean 
 

S.E. 

 
Exponential 

 

363.01̂ =λ   (MLE) 

132.0ˆ
2 =λ  (MM) 

2.755 
 

7.576 

* 
 

7.576 

 
Gamma 

 
306.5ˆ;431,1ˆ 11 == βα   (MLE) 

984.7ˆ;951.0ˆ 22 == βα   (MM) 

 
7.593 

 
7.593 

 
6.347 

 
7.786 

 
Weibull 

 

27
11 100832.9ˆ;772.21ˆ −×== ab (MLE) 

414.0ˆ;570.0ˆ
22 == ab (MM) 

 
15.285 

 
7.584 

 
* 
 

14.226 

 
Maxwell 

 

028.01̂ =θ  (MLE) 

044.0ˆ
2 =θ (MM) 

9.537 
 

7.608 

* 
 

3.211 

* The SE is not obtained because the parametric mean is not encouraging. 
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