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 Abstract 

The performances of five estimators of linear models with autocorrelated 
disturbance terms are compared when the independent variable is exponential. 
The results reveal that for both small and large samples, the Ordinary Least 
Squares (OLS) compares favourably with the Generalized least Squares (GLS) 
estimators in respect of bias property.  On the basis of variance and root mean 
square error property, OLS compares favourably with maximum likelihood 
(ML) and Maximum Likelihood Grid  (MLGRID) estimators for small 
autocorrelation coefficient of the error term ρ but it appears uniformly 
superior to Cochrane-Orcutt (COC) and Hildreth and LU (HILU) estimators 
especially when ρ is large. 
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1.0 Introduction 
 Autocorrelation of the error terms included in econometric models has remained a major 
characteristic of most time series data. Many models in corporating auto-correlated error terms have been 
discussed in the literature. The variety of scenarios in which time series observations can be plagued by 
auto-correlated disturbances are so many that inspite of numerous analytical and empirical contributions 
already made on this subject, the available diagnostic procedures and competing corrective estimation 
methods leave many questions yet unanswered. 
 Although some authors like Chipman (1979) [1], Kadiyala (1968) [4] have argued that the 
efficiency of the estimators at the finite level depends much on the specification of the independent 
variable used in the experiment, there is still much need to investigate the finite sampling properties of 
these estimators. 
 Some researchers like Godfrey (1978) [2] have tried to give a general approach to the treatment 
of autocorrelation when they occur in linear models. However, the treatment of each type as it occurs 
specifically in a model has always given better results. Iyaniwura and Nwabueze (2004) [3] in their work 
estimated the Auto-correlated error linear model with Gross national product (GNP) data as the 
independent variable and found out that the estimators COC and HILU performed worse than OLS while 
MLDRID and ML performed better than OLS.  Also, Nwabueze (2005) [5] in a work on Auto-correlated 
error linear model discovered that when the independent variable is autoregressive, the variance of the 
slope coefficient of  the OLS increases very sharply with increasing value of ρ, the autocorrelation 
coefficient of the error term and it is always larger than the variance of GLS. 
 Therefore, this study shall have as its main focus, the performances of estimators of linear models 
with first order auto-correlated disturbance terms when the independent variable is exponential. 
 Rao and Grilliches (1969) [6] gave one of the earliest known Monte Carlo works on this study. 
They used a model of the type 
  ,,, 11 ttttttttt UUVXXUXY ερλβ +=+=+= −−  

  ( ) ( ) ( ) ( ) ( ) 011 ===== −−∑ tttttttt VVEVEEVE εεεε   (1.1) 

  ( ) ( ) TtEVE Evt ,,1,1,1,, 2222
Lpp === ρλσεεσ  
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Where, Yt is the dependent variable, β is the regression parameter, Ut is the disturbance term of Yt,   Xt  is 
the independent variable, Vt is the disturbance term of Xt, λ  is the autocorrelation coefficient of Xt ,  ρ is 
the autocorrelation coefficient of Ut, εt is  the disturbance term of Ut and E( ) stands for the expected value 
of the variable in the bracket. 
 
2.0. MODEL SPECIFICATION 
 The following single equation linear econometric model with autocorrelated disturbances was 

used:   TtPUUUXY tttttt ,,2,1,1,, 121 Lp =+=++= − ερββ  (2.1) 

The independent variable Xt was assumed to be exponential given as Xt= exp (0.4t). 
 
3. SIMULATION PROCEDURE 
 In econometrics, while asymptotic properties of estimators obtained by using various econometric 
techniques are deduced from postulates, an approach that is often described as analytical, small sample 
properties of such estimators have always been studied from simulated data in a method known as Monte 
Carlo studies.  This work uses Monte Carlo approach. 
 The parameter values of β1 and β2 in the model were fixed at (1,1). To generate the multivariate 
normal vectors used for this study, the autocorrelated error term Ut =  ρ Ut –1 + εt was first generated. Then 
the independent variable Xt = Exp (0.04t) was also computed. Thereafter, the multivariate normal 
dependent vector Y was computed using equation (2). The generation of the error terms,  the independent 
variable and the computation of the dependent variable are made using a package for econometric studies 
called time series processor (TSP). 
 The simulation experiment was replicated 50 times. The sample sizes were varied from 20, 40 to 
60 in order to study the effect of sample size on the performance of the estimators. Since the study is 
investigating the performances of the estimators when the error term is autocorrelated, three different 
estimates of the autocorrelation coefficient of the error term ρ= 0.4, 0.8 and 0.9 were used. After the 
generation of the data, different estimation methods were applied to the data using the AR (1) functions of 
TSP software package on an IBM computer at the center for econometric and Allied research (CEAR) 
University of Ibadan. The deviations of the simulated values from the original data series based on the 
estimators were then assessed using simulation statistics. The simulation statistics used in assessing the 
performances of the estimators in this study are bias, sum of bias of both the intercept and the slope 
coefficients (SBIAS), the variance, sum of variance of both the intercept and the slope coefficients 
(SVARS), the root mean square error (RMSE), and the sum of root mean square error (SRMSE) of both 
the intercept and the slope coefficients. Five estimators were used for this study namely OLS, HILU, 
COC, ML and MLGRID. The four other estimators apart from the OLS are called Generalized Least 
squares estimators (GLS). 
 
4.0 Results of the simulation experiment 
 Table 1 reveals that on the basis of Bias property, the estimators compare favourably with one 
another for instance at a sample size of 20, when the autocorrelation coefficient is 0.4, all the estimators 
overestimated the intercept β1 and also underestimated the slope coefficient β2. A more remarkable result 
is seen in table 2, where the SVAR of COC and HILU are much higher than the SVAR of OLS while the 
SVAR of OLS is higher than either the SVAR of MLGRID or that of ML. And this observation cuts 
across all the sample sizes considered in this experiment. Table 2 shows the SVARS of the estimators as 
3.377270, 4.479924, 4.312851, 3.085169 and 3.010210, 20.275750, 28.411510, 30.012930, 15.361710 
and 15.197930, 38.571220, 59.903180, 58.387400, 31.279830 and 3.690590 when T = 20 and ρ = 0.4, 0.8 
and 0.9 for OLS, COC, H1LU, MLGRID and ML respectively. This result shows that OLS is preferred to 
COC and H1LU even for large samples.  
 Therefore, our results suggest that from cost/benefit of view, we should not estimate this model 
using either COC or H1LU even when the sample size T is large. From table 3, we also observe that the 
SRMSE of COC and H1LU are much higher than the SRMSE of OLS both for small and large 
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autocorrelation coefficient ρ. As the degree of autocorrelation coefficient ρ increases, table 3 also shows 
that the SRMSE of OLS is higher than either the SRMSE of MLGRID or that of ML. 
 
5.0 Conclusion 
 In summary, the major conclusions which could be drawn from our experiment are the following. 
 For both small and large samples, OLS compares favourably with the GLS estimators in respect 
of BIAS properties. On the basis of VAR and RMSE properties, OLS compares favourably with ML and 
MLGRID for small ρ but it appears uniformly superior to COC and H1LU especially when ρ is large. 
However, for large autocorrelation of the error term, MLGRID and ML dominate OLS. 

 Table: 1 The Use Of Bias To Compare The Estimators 

   T = 20     T = 40   T = 60 

ρ     Estimators         β1             β2            SBIAS       β1             β2            SBIAS      β1               β2            SBIAS 

         OLS 

         COC 

0.4    HILU 

        MLGRID 

         ML 

-0.185509   0.105000   0.290509 

0.216399   0.062795   0.279194 

-0.214580  0.121521    0.336101 

-0.220608  0.126495   0.347103  

-0.193240   0.127190   0.320430 

-0.067968  0.038473  0.106441 

-0.047372  0.023931  0.071302 

-0.047270  0.019351  0.066621 

-0.023787  0.017620  0.041407  

-0.042800  0.014620 0.057420 

0.003960  -0.000274  0.004234 

-0.006690  0.001544  0.008234 

-0.019360  0.001540  0.020900 

-0.006399  0.001490  0.007889 

-0.04460   -0.000655  0.005115 

             

        OLS 

         COC 

0.8    HILU 

        MLGRID 

         ML 

0.169905  -0.084700  0.254605 

-0.274413   0.143459   0.417872 

0.336209   0.172009   0.508218 

-0.369410  -0.130079  0.499489 

-0.223170   0.127192   0.350362 

-0.140350  0.052700  0.193050 

-0.012100  0.038201  0.050301 

-0.098278  0.043390  0.141668 

-0.048974  0.022391  0.071365 

-0.052400  0.023820  0.076220 

0.0515041 -0.029690   0.018010 

0.000491    0.000341   0.000832 

-0.426200  -0.000495   0.426695 

0.010638    0.002680   0.013318 

0.011502    0.001530  0.013032 

 

         OLS 

          COC 

0.9    HILU 

        MLGRID 

         ML 

-0.052185   0.047897  0.100082 

-1.185330   0.311500   1.496830 

0.525850   0.307560   0.833410 

0.048486  -0.007442  0.055928 

0.155310  -0.012560   0.167870 

-0.184890  0.083236  0.268126 

-0.143660  0.056600  0.200260 

-0.188530  0.066760  0.255290 

-0.050230  0.028501  0.078731 

-0.080460  0.040850  0.121310 

-0.004390  0.006044  0.010434 

-0.094860  0.001357  0.096217 

0.066270  -0.006788  0.073058 

0.040778  -0.018592  0.059370 

-0.008963 -0.006300  0.015263 

 
Table 2: The Use of Variance to Compare the Estimators 

    T = 20    T = 40             T= 60  
ρ     Estimators β1             β2        SVAR         β1              β2           SVAR      β1             β2              SVAR 

       OLS 
       COC 
0.4  HILU 
       MLGRID 
       ML 

2.406800  0.970470  3.377270 
3.112170  1.367754  4.479924 
3.138259  1.174592  4.312851 
2.203972  0.881197  3.085169 
2.137080  0.873130  3.010210 

0.229740    0.012820  0.242560 
0.284569    0.041884  0.326448 
0.2845471  0.040850  0.326321 
0.222670    0.035598  0.258268 
0.235946    0.034800  0.270746 

0.091800  0.004879  0.096679 
0.093950  0.004880  0.098830 
0.095415  0.004880  0.100295 
0.093877  0.004920  0.098797 
0.093560  0.005350  0.098910 
 

       OLS 
       COC 
0.8  HILU 
       MLGRID 
       ML 

15.046600  5.229150  20.275750 
21.614620  6.796890  28.411570 
22.960910  7.052020  30.012950 
1.374570  3.987140  15.361710 
11.428610  3.769320  15.197930 

1.726640  0.214560  1.941200 
2.272247  0.363177  2.635424 
2.415090  0.288857  2.703947 
1.684909  0.213866  1.898777 
1.039490  0.207096  1.246586  

0.714265  0.032025  0.746290 
0.791930  0.033000  0.824930 
0.801612  0.033060  0.834672 
0.703618  0.029040  0.732658 
0.708740  0.030050  0.738790 
 

 
 

ρ     Estimators         β1             β2            SBIAS       β1             β2            SBIAS      β1               β2            SBIAS 

      OLS 
      COC 

30.225080    8.346140  38.571220 
47.592600  12.310580  59.903180 

4.726377  0.498291  5.224668 
7.222000  0.672180  7.894180 

2.536550  0.092020  2.628570 
3.106450  0.090630  3.107080 
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0.9 HILU 
      MLGRID 
      ML 

46.243220  12.144180  58.387400 
24.748960    6.530870  31.279830 
24.253050     6.437540  30.690590 

6.725300  0.637500  7.362800 
4.569444  0.431770  5.001214 
4.517200  0.424280  4.941480 

2.683700  0.087320  2.771020 
2.357850  0.072850  2.430700 
2.273050  0.072400  2.345450 

 
Table 3: The Use of RMSE to Compare the Estimators 

    T = 20   T = 40    T= 60  
ρ          Estimators β1                              β2               SRMSE β1                            β2               SRMSE β1                              β2           SRMSE 
              OLS 
              COC 
0.4         HILU 
              MLGRID 
              ML 

1.562438  0.990704  2.553142 
1.777357  1.171195  2.948662 
1.784462  1.090578  2.875040 
1.500880  0.947205  2.448085 
1.474592  0.943031  2.417623 

0.484107  0.119583  0.603690 
0.535548  0.206050   0.741598 
0.536382  0.203038   0.739420 
0.472478  0.189495  0.6611973 
0.487625  0.187120   0.6747440 

0.303011  0.069850  0.372861 
0.306586  0.069874  0.376460 
0.309499  0.069873  0.379372 
0.306460  0.070159  0.376619 
0.305908  0.073147  0.379055 

 
             OLS 
             COC 
8.0        HILU 
             MLGRID 
             ML 

3.882714   2.288302   6.171016 
4.657244   2.611029   7.268273 
4.803535   2.661129   6.464664 
3.392791  2.001015  5.393806 
3.387981  1.945636  5.333617 

1.321491  0.466195  1.787686 
1.507446  0.603851  2.111297 
1.557160  0.539203  2.096363 
1.298964  0.462998  1.761962 
1.020899  0.455701  1.476600 

0.845276  0.178980  1.024256 
0.889905  0.181659  1.071564 
0.991594  0.181825  1.173419 
0.838887  0.170432 1.009319 
0.841946 0.173356   1.015302 
 

            OLS 
            COC 
0.9       HILU 
            MLGRID  
            ML  

5.497982    2.89360   8.387342 
6.999829   3.522444  10.522273 
6.820538   3.498396  10.318934 
4.975069   2.555568  7.530637 
4.927187   2.537262  7.464449 

2.181871  0.710788  2.892659 
2.691215  0.821817  3.513032 
2.660162  0.801222  3.401384 
2.138216  0.657710  2.795926 
2.126893  0.652648  2.779541 

1.592661  0.303408  1.896069 
1.739382  0.301051  2.040433 
1.639540  0.295578  1.935118 
1.536071  0.270547  1.806618 
1.507690  0.269146  1.776836 
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