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Abstract

The performances of five estimators of linear models with autocorrelated
disturbance terms are compared when the independent variable is exponential.
The results reveal that for both small and large samples, the Ordinary Least
Squares (OLS) compares favourably with the Generalized least Squares (GLYS)
estimatorsin respect of bias property. On the basis of variance and root mean
square error property, OLS compares favourably with maximum likelihood
(ML) and Maximum Likelihood Grid (MLGRID) estimators for small
autocorrelation coefficient of the error term p but it appears uniformly
superior to Cochrane-Orcutt (COC) and Hildreth and LU (HILU) estimators
especially when pislarge.
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1.0 Introduction

Autocorrelation of the error terms included in econometric moteals remained a major
characteristic of most time series data. Many models in catipg auto-correlated error terms have been
discussed in the literature. The variety of scenarios ictwtime series observations can be plagued by
auto-correlated disturbances are so many that inspite of nunseralysical and empirical contributions
already made on this subject, the available diagnostic procedwtesoepeting corrective estimation
methods leave many questions yet unanswered.

Although some authors like Chipman (1979) [1], Kadiyala (1968) [4] lzageed that the
efficiency of the estimators at the finite level dependshmoic the specification of the independent
variable used in the experiment, there is still much need #sfigate the finite sampling properties of
these estimators.

Some researchers like Godfrey (1978) [2] have tried to @jigeneral approach to the treatment
of autocorrelation when they occur in linear models. Howeverfrédament of each type as it occurs
specifically in a model has always given better resylgmiwura and Nwabueze (2004) [3] in their work
estimated the Auto-correlated error linear model with Gnoggonal product (GNP) data as the
independent variable and found out that the estimators COC andp¢iifarmed worse than OLS while
MLDRID and ML performed better than OLS. Also, Nwabueze (200bin[a work on Auto-correlated
error linear model discovered that when the independent \avistautoregressive, the variance of the
slope coefficient of the OLS increases very sharply wittreiasing value op, the autocorrelation
coefficient of the error term and it is always larger than the variahGLS.

Therefore, this study shall have as its main focus, the performanestnaditors of linear models
with first order auto-correlated disturbance terms when the independetiedas exponential.

Rao and Grilliches (1969) [6] gave one of the earliest known MBatk works on this study.
They used a model of the type

Yo = BX¢ +Up, Xp = AXi—1 #Vy, Up = pUgg +é,
EM)=Elg) = EMe) =D (&) = EMVt—1) =0 (1.1)
E&/ ) o2, E ( é):agz, A<1 | <1 t=1--T
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Where,Y,is the dependent variabl@g,is the regression parametek,is the disturbanceerm ofY,, X; is
the independent variablg, is the disturbance term &f, A is the autocorrelation coefficient of Xp is
the autocorrelation coefficient bf, € is the disturbance term bk andE( ) stands for the expected value
of the variable in the bracket.

2.0 MODEL SPECIFICATION
The following single equation linear econometric model wittoearrelated disturbances was

used: Y; = B+ BoXy +Uy, Up = pUyg +ep, [Pl <1 t=122--T (2.1)
The independent variab} was assumed to be exponential giveXasexp (0.4t).

3. SIMULATION PROCEDURE

In econometrics, while asymptotic properties of estimators obtained byvasiogs econometric
techniques are deduced from postulates, an approach that isiesaibed as analytical, small sample
properties of such estimators have always been studied fnameased data in a method known as Monte
Carlo studies. This work uses Monte Carlo approach.

The parameter values Bf andf3, in the model were fixed at (1,1). To generate the multivariate
normal vectors used for this study, the autocorrelated errorle= p U, _; + g, was first generated. Then
the independent variabl®, = Exp (0.04t) was also computed. Thereafter, the multivariate ahorm
dependent vector Y was computed using equation (2). The generatienesfor terms, the independent
variable and the computation of the dependent variable are madeaysiegage for econometric studies
called time series processor (TSP).

The simulation experiment was replicated 50 times. The saiazpkewere varied from 20, 40 to
60 in order to study the effect of sample size on the performdnite @stimators. Since the study is
investigating the performances of the estimators when the temoris autocorrelated, three different
estimates of the autocorrelation coefficient of the erranter 0.4, 0.8 and 0.9 were used. After the
generation of the data, different estimation methods were applied to thesofatahe AR (1) functions of
TSP software package on an IBM computer at the center for eetmmand Allied research (CEAR)
University of Ibadan. The deviations of the simulated values fthe original data series based on the
estimators were then assessed using simulation statistiessifulation statistics used in assessing the
performances of the estimators in this study are bias, summsfof both the intercept and the slope
coefficients (SBIAS), the variance, sum of variance of bothitkercept and the slope coefficients
(SVARS), the root mean square error (RMSE), and the sum ofmean square error (SRMSE) of both
the intercept and the slope coefficients. Five estimater® wsed for this study namely OLS, HILU,
COC, ML and MLGRID. The four other estimators apart from thesQ@ite called Generalized Least
squares estimators (GLS).

4.0 Resultsof thesimulation experiment

Table 1 reveals that on the basis of Bias property, stima&ors compare favourably with one
another for instance at a sample size of 20, when the autotiorrelaefficient is 0.4, all the estimators
overestimated the intercefpt and also underestimated the slope coeffigggnf more remarkable result
is seen in table 2, where the SVAR of COC and HILU are mudfehigpan the SVAR of OLS while the
SVAR of OLS is higher than either the SVAR of MLGRID or ttledt ML. And this observation cuts
across all the sample sizes considered in this experimdsie Zahows the SVARS of the estimators as
3.377270, 4.479924, 4.312851, 3.085169 and 3.010210, 20.275750, 28.411510, 30.012930, 15.361710
and 15.197930, 38.571220, 59.903180, 58.387400, 31.279830 and 3.690590 when T g204dn@®.8
and 0.9 for OLS, COC, H1LU, MLGRID and ML respectively. Thisuleshows that OLS is preferred to
COC and H1LU even for large samples.

Therefore, our results suggest that from cost/benefit of, wiavshould not estimate this model
using either COC or H1LU even when the sample size Tge l&rom table 3, we also observe that the
SRMSE of COC and H1LU are much higher than the SRMSE of Git§ for small and large
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autocorrelation coefficiert. As the degree of autocorrelation coefficiprincreases, table 3 also shows
that the SRMSE of OLS is higher than either the SRMSE of MLGRID or that of

5.0

Conclusion

In summary, the major conclusions which could be drawn from our experinaghiediollowing.

For both small and large samples, OLS compares favourattiytive GLS estimators in respect
of BIAS properties. On the basis of VAR and RMSE properties, Qir8pares favourably with ML and
MLGRID for small p but it appears uniformly superior to COC and H1LU especiallynvyhes large.
However, for large autocorrelation of the error term, MLGRID and ML datai OLS.
Table: 1 The Use Of Bias To Compare The Estimators

T=20 T=40 T=60
p Estimators B1 B, SBIAS B1 B. SBIAS B:1 B, SBIAS

OLS -0.185509 0.105000 0.290509 -0.067968 0.038473 0.106441 0.003960 -0.000274 0.004234

CcoC 0.216399 0.062795 0.279194| -0.047372 0.023931 0.07130Z -0.006690 0.001544 0.008234

0.4 HILU -0.214580 0.121521 0.336101 -0.047270 0.019351 0.066621 -0.019360 0.001540 0.020900
MLGRID | -0.220608 0.126495 0.347103 -0.023787 0.017620 0.041407 -0.006399 0.001490 0.007889

ML -0.193240 0.127190 0.32043(0 -0.042800 0.014620 0.057420| -0.04460 -0.000655 0.005115
oLS 0.169905 -0.084700 0.254605| -0.140350 0.052700 0.193050 0.0515041 -0.029690 0.018010
CcoC -0.274413 0.143459 0.417872 -0.012100 0.038201 0.050301 0.000491 0.000341 0.000832
0.8 HILU 0.336209 0.172009 0.508218| -0.098278 0.043390 0.141668 -0.426200 -0.000495 0.426695
MLGRID | -0.369410 -0.130079 0.499489 -0.048974 0.022391 0.071365 0.010638 0.002680 0.013318

ML -0.223170 0.127192 0.350362 -0.052400 0.023820 0.07622(Q 0.011502 0.001530 0.013032

OLS -0.052185 0.047897 0.100082 -0.184890 0.083236 0.268126 -0.004390 0.006044 0.010434

cocC -1.185330 0.311500 1.496830 -0.143660 0.056600 0.20026(0 -0.094860 0.001357 0.096217

0.9 HILU 0.525850 0.307560 0.833410| -0.188530 0.066760 0.25529(0 0.066270 -0.006788 0.073058
MLGRID | 0.048486 -0.007442 0.055928| -0.050230 0.028501 0.078731 0.040778 -0.018592 0.05937(Q

ML 0.155310 -0.012560 0.167870 -0.080460 0.040850 0.12131d -0.008963 -0.006300 0.015263

Table 2: The Use of Variance to Compare the Estimators
T=20 T=40 T=60
p Estimators By B, SVAR B1 B, SVAR B1 B, SVAR

OLS 2.406800 0.970470 3.377270| 0.229740 0.012820 0.242560| 0.091800 0.004879 0.096679
CcoC 3.112170 1.367754 4.479924| 0.284569 0.041884 0.326448| 0.093950 0.004880 0.098830
0.4 HILU 3.138259 1.174592 4.312851| 0.2845471 0.040850 0.326321| 0.095415 0.004880 0.100295
MLGRID 2.203972 0.881197 3.085169| 0.222670 0.035598 0.258268| 0.093877 0.004920 0.098797

ML 2.137080 0.873130 3.010210| 0.235946 0.034800 0.270746| 0.093560 0.005350 0.098910
OLS 15.046600 5.229150 20.2757%01.726640 0.214560 1.941200| 0.714265 0.032025 0.746290
CcocC 21.614620 6.796890 28.4115702.272247 0.363177 2.635424 | 0.791930 0.033000 0.824930
0.8 HILU 22.960910 7.052020 30.0129%02.415090 0.288857 2.703947 | 0.801612 0.033060 0.834672
MLGRID 1.374570 3.987140 15.36171(0 1.684909 0.213866 1.898777| 0.703618 0.029040 0.732658

ML 11.428610 3.769320 15.1979301.039490 0.207096 1.246586 | 0.708740 0.030050 0.738790

p Estimators Bl B2 SBIAS B1 B2 SBIAS Bl B2 SBIAS
OLS 0.225080 8.346140 38.571220| 4.726377 0.498291 5.224668 | 2.536550 0.092020 2.628570
CcOocC 7.592600 12.310580 59.9083: 7.222000 0.672180 7.894180 | 3.106450 0.090630 3.107080
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0.9 HILU 6.243220 12.144180 58.387- 6.725300 0.637500 7.362800 | 2.683700 0.087320 2.771020
MLGRID 4748960 6.530870 31.279: 4569444 0.431770 5.001214 | 2.357850 0.072850 2.430700
ML 4.253050 6.437540 30.690! 4517200 0.424280 4.941480 | 2.273050 0.072400 2.345450
Table 3: The Use of RMSE to Compare the Estimators
T=20 T=40 T=60
p Estimators | B; B SRMSE B B SRMSE B:1 B, SRMSE
OLS 1.562438 0.990704 2.553142 | 0.484107 0.119583 0.603690| 0.303011 0.069850 0.372861
COC 1.777357 1.171195 2.948662 | 0.535548 0.206050 0.741598 0.306586 0.069874 0.376460
0.4 HILU 1.784462 1.090578 2.875040 | 0.536382 0.203038 0.739420 0.309499 0.069873 0.379372
MLGRID 1.500880 0.947205 2.448085| 0.472478 0.189495 0.6611973 0.306460 0.070159 0.376619
ML 1.474592 0.943031 2.417623| 0.487625 0.187120 0.67474400.305908 0.073147 0.379055
OoLS 3.882714 2.288302 6.171016 1.321491 0.466195 1.787686| 0.845276 0.178980 1.024256
cocC 4.657244 2.611029 7.268273 1.507446 0.603851 2.111297| 0.889905 0.181659 1.071564
8.0 HILU 4.803535 2.661129 6.464664 1.557160 0.539203 2.096363| 0.991594 0.181825 1.173419
MLGRID 3.392791 2.001015 5.393806 | 1.298964 0.462998 1.761962| 0.838887 0.170432 1.009319
ML 3.387981 1.945636 5.333617 | 1.020899 0.455701 1.476600| 0.841946 0.173356 1.015302
OLS 5.497982 2.89360 8.387342 | 2.181871 0.710788 2.892659| 1.592661 0.303408 1.896069
CcoC 6.999829 3.522444 10.522273 2.691215 0.821817 3.513032| 1.739382 0.301051 2.040433
0.9 HILU 6.820538 3.498396 10.318934 2.660162 0.801222 3.401384| 1.639540 0.295578 1.935118
MLGRID 4.975069 2.555568 7.530637 | 2.138216 0.657710 2.795926| 1.536071 0.270547 1.806618
ML 4.927187 2.537262 7.464449 | 2.126893 0.652648 2.779541| 1.507690 0.269146 1.776836
References

[1]
(2]
[3]
[4]
[5]

[6]

Performances of estimators when independent variable is normal

Chipman, J.S. (1979). Efficiency of least SqsarEstimation of linear Trend when Residuals Are
Autocorrelation Econometrica. Vol. 47 PP 115 -.127

Godfrey, L.G.C. (1978). Testing Against Genefaltoregressive and Moving Average Error Model
When The Regressors include Lagged DependentblasisEconometrica. Vol. 46 PP 1293 — 1301.
lyaniwura, J.O0 and Nwabueze, J.C. (2004). Esting the Autocorrelated Error model with GNP data.
Journal of the Nigerian Statistical Associatiowl\M.7, PP 29 — 39.

Kadiyala, K. R. (1968). A Transformation used Circumvent The Problem of Autocorrelation
Econometrica. Vol 36, pp 93-96.

Nwabueze, J. C. (2005). Performances of Estinsadf linear Models with Autocorrelated error term
when the independent variable is Autoregressiieb& Journal of Pure and Applied Sciences. Vol.
11, No. 1. pp 131-135.

Rao, P and Grilliches, Z. (1969). Small sampteperties of several two stage Regression methods
the Context of Autocorrelated Errors. Journal ohekican Statistical Association. Vol. 64, pp 251 —
272.

Journal of the Nigerian Association of Mathematical Physics, Volume 9 (November 2005)
J. C. Nwabueze J of NAMP



