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Abstract

A Monte Carlo Study of the small sampling properties of five estimators of a
linear model with Autocorrelated error terms is discussed. The independent
variable was specified as standard normal data. The estimators of the sop

coefficients ,éz with the help of Ordinary Least Squares (OLS), increased
with increased autocorrelation especially when T is small. On the other hand,

the same slope coefficientsﬂz, under Generalized Least Squares (GLS)
decreased with increased autocorrelation when the samplesize T is small.
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1.0 Introduction

Approaches to dealing with estimation in Autocorrelated linear adeude overall Maximum
likelihood estimation, Ordinary Least Squares and transformativar@bles. When the Autocorrelation
coefficients are known, usually, the estimation poses no major prelaerthe underlying variables can
be transformed to overcome this problem. Different formsrafisformation techniques have been
proposed by different authors. Several authors have different mathedsimating the Autocorrelated
parameters in situations where the variables are unknown. €hesesstimates are used as weights in
estimatingB, the regression coefficient. For this study, we used fitimatrs namely the Cochrane and
Orcutt estimator (COC), Hildreth and LU (HILU), the maximdikelihood Grid (MLGRID), the
maximum likelihood (ML) and the Ordinary Least Squares (OR8)Xhe other estimators apart from the
Ordinary Least Squares (OLS) estimator are called Generalized3a#estes (GLS) estimators.

Asymptotically, each of these estimators are equivaletht identical asymptotic properties. But
in finite samples, such as in this work, Park and MitchEd8Q) [7] have argued that the estimation
methods that use the P transformation matrix are generally efficient than the estimators that use P
transformation matrix. Kramer (1980) [4] in his paper statedl ttha efficiency of these estimators
depends much on the specification of the independent variablerugetléxperiment and went ahead to
show that some of the estimators proposed in the literaturextonple, Cochrane-Orcutt, has lower
efficiency than OLS especially when the independent variable has samde-tr

lyaniwura and Nwabueze (2004) [2] in their work, estimated tib@carrelated error model with
Gross National Product (GNP) data as the independent vaaa@iléound out that the estimators COC
and HILU performed worse than OLS while MLGRID and ML perfednbetter than OLS. Also,
Nwabueze (2005) [6] in a work on Autocorrelated error linear modstodered that when the
independent variable is autoregressive, the variance ofape soefficient of the GLS methods increase
very slowly while the variance of the slope coefficientrd OLS increases very sharply with increasing
value ofp and was always larger than the variance of the GLS estimators.
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Some authors like Macshiro (1976) [5], Beach and Mackinnon (1978h{tlPark and Mitchell
(1980) [7] have investigated the efficiency of some of tlestenators over OLS. This study broadens
and deepens our understanding of the finite sampling propertiesm&f of the estimators of linear
models with auto-correlated error terms prevalent in tieealiire and examines the effects of standard
normal data as the independent variable on the performancessef ¢sdmators. Also, this work
investigates the effects of increased sample size and gneedef the Autocorrelation coefficient of the
error terms on the performances of these estimators.

2.0 Estimation methods
Consider the common linear econometric model.

E(s)=0, E(&sl): o%l, E(U)=0 and E(UU1)= oQ

On multiplying the model 2.1 by some non-singular transformation matrix P of bXdemwe obtain.
PY = PXg8+ PU (2.2)

But the variance matrix of the disturbance in equation (2.2) is E {PJutb® PQP*, since E(PU) = 0.
Therefore, if it were possible to speciysuch thatP n P' = 1, then resulting OLS estimates of the
transformed variable PY in equation (2.2) have all the optingdgrties of OLS and could be validly
subjected to the usual inference procedures (Johnson and Dinardo,399%plying OLS to equation
(2.2) results in minimizing the quadratic form

UtQU= (Y -XB)' 2 (Y-XPB) (2.3)
with optimal solution as gg (UlQU):(XlﬁlX),[z’ - Xl =0 (2.4)
which gives B(GLS) = (¢QX) x'QtY (2.5)

The variance covariance matrix is given as(,{}%rz oX(X'QX) . This estimator3 (GLS) is known as

the Aitken or Generalized Least Squares (GLS) estimatae issume normality for the error terms, the
likelihood function is given by:

2 T -1 _ =1(.\, _
L[;,J_}z(mz) 0 ZeXle(y xfaly Xﬂ)} 08
y 20

where Q)| is the determinant @. Optimizing the likelihood function of equation (2.6) with respe@,to
means maximizing the weighted sum of squares and we obtain

B(GML) = (X} QX)X'QtY 2.7)
In obtaining ,@(OLS) and,@(GLS), we assume th& is known, whenQ is not known, we resort to
estimatingQ by Q in which case, we obtain an estimated Generalized Least Squar8)(BGestimated

generalized maximum likelihood (EGLM) estimator and therefgfdGLS) = (¢ Q™1X) Ix QY.
For this model in equation (2.1), the TXT covariance matrix of the erotoves

1 P pz pT_l
yo, 1 p - pT_Z
E(UU]'): O'L%V = 062‘ p2 o 1 - Yo, (2.8)
pT_l 1
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where 02 =, %% 5\ To search for a suitable transformation matrix P*, we considerfaiiowing
-p
matrix P* of order (T - )XT defined by
-p 1 O - 0 O
0 -p 0 0O O
0 O -p -+ O 0
P[= (2.9)
0 0 O e =p
pT_l 1
where
1 -p o .-~ 0 0
2 2
P~ 1+p p - 0 0
E@Uﬂ=dﬂ=a§o—p 1 p% - 0 0 (2.10)
0 0 o - -p 1 (T-1)xT

P*'P* gives (1 -p?) Q' with -p? instead of 1 as the first element. Next, we consider anotk&r T
transformation matrix P obtained by adding a new first vath 1 - p? in the first position and zero
elsewhere.

1-p> 0 0 - 0 O
-p 1 0 - 0 O
P=1 0 -p 1 -~ 0 O (2.11)
0 0 0 « -p 1)y

PP = (1p9) Q™

P* and P differ only in the treatment of the first observatidnisEnuch easier to use provided one is
prepared to put up with its treatment of the first observatidmadtbeen shown that whéris large, the
difference is negligible but in small samples such athis work, the difference is significant. Such
transformations give rise to different methods of estomatirhese methods are broadly classified into
those that use P* transformation matrix such as Cochranet@@QC) and Hildreth and LU(HILU)
estimators and those that use P transformation matrix subtadmum Likelihood (ML) estimators of
Beach and Mackinon (1978) [1] and Maximum Likelihood method Grid (MIIJRThe values of the
autocorrelation coefficient of the error term ripd gsed were 0.4, 0.8 and 0.9. These values were chosen
in order to determine the effect of autocorrelation on the performartibe estimators

3.0 Method of simulation

In econometrics, while asymptotic properties of estimatorsir@mtaby using various econometric

techniques are deduced from postulates, an approach that is cfteivetk as analytical, small sample
properties of such estimators have always been studied froolagdoh data known as Monte Carlo

studies. The use of this approach is due to the fact thdifeeabservations on economic variables are in
most cases plagued by one or all of the problems of non-spheritabdizces and measurement errors.

This work uses Monte Carlo Approach. The parameter valugsawsfd(3, in the
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model (2.1) were fixed at (1,1). To generate multivariate normebrseto be used for this study, the
autocorrelated error term d pU,; +y; was first generated.

After generating the autoregressive error terms, aobkalata that is standard normal was
generated as the independent variable. Thereafter, the matevaormal dependent vectors Y were
computed using equation (2.1).

The generation of the error terms, the independent variabletrendcomputations of the
dependent variable are made using a package for economedigsstalled time series processor (TSP).
The simulation experiment was replicated 50 times. The sanzgle wiere varied from 20 to 40 to 60 in
order to test the effect of sample size on the performanctheofestimators. Since this study is
investigating the performance of the estimators when the wmor is autocorrelated, three different
estimates of the error tergm were used for the study namely when= 0.4, 0.8 and 0.9. Thereafter,
different estimation methods were applied to the data using Ehé1l function of the TSP Software
package on an IBM Computer at the center for econometric Hiedl fesearch (CEAR), University of
Ibadan. The performance of the simulated values from the origirealsdaes based on the estimators
were then assessed by simulation statistics. The simulation ssatiséid in assessing the performances of
the estimators in this study are: bias, sum of bias of botimtxeept and slope coefficients (SBIAS), the
variance, sum of variance of both the intercept and slope desff(SVARS), the root mean square error
(SRMSE), and the sum of root mean square error (SEMSE) of both the inBerdegiope coefficients.

4.0 Results anddiscussions

Tables 1-3 summarize the relative performances of tleedstimators using the criteria, Bias,
sum of bias (SBIAS), variance (VAR), sum of variance (SVARNt mean square error (RMSE) and
sum of root mean square error (SRMSE). In the first columnhar¢htee values of the autocorrelation
coefficient p used for our study. The performances of these estimaterns also compared using
different sample sizes so the first row of the tables shih@sdifferent sample sizes used for the
experiment. The results of our experiment reveal that of the b&8IAS property, the GLS method
compares very well with the OLS and with one another whersitte of the sample and degree of
autocorrelation are small.

In this case, the OLS and the GLS methods underestimate theanlbpiee intercept coefficients
(i. e whenp and T are both small). These biases are observed to sieevith increased sample size. As
p increases and T is small, the biases for COC increase.shbiss that the effect of degree of
autocorrelation on the comparative performance of the estimators is of ignifieaice when T is small.
The five methods yield the SBIAS of 0.142415, 0.395290, 0.025170, 0.147572 and 0.151300 for T =20
andp = 0.9 for OLS, COC, HILU, MLGRID, and ML respectively (see Table 1).

5.0 Conclusion

An evaluation of the estimators using the least variance critenealsethat:

1. The estimates of the slope coefficiegt (OLS) increases with increased autocorrelation
especially when T is small.

2. The estimates of the slope coefficifat(GLS) decreases with increased autocorrelation when T
is small.

The reason for this difference between OLS and GLS estimatdhe estimator of the slope
coefficient3, could be due to the fact that the Generalized Least Sq(ak&S) estimators correct the
autocorrelation of the error term unlike the Ordinary Least Sq@it8) estimator which assume that the
error terms are uncorrelated.

3. In estimating this model when T is small anid large, the estimators in order of preference are:
HILU, ML, MLGRID, OLS and COCg =0.9, T = 20) and

4, In estimating this model when T is large, the order of présr is COC, HILU, ML, MLGRID
and OLS.
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0.4

0.8

0.9

The same conclusions are reached when the estimators anatedalising the root mean square error

Table 1: The Use of Bias to Compare the Estimators

T
B2

0.000689

0.003754

0.004821 000167 0.005984

0.002090
0.002300

0.013230
0.000077
0.002958
0.001573
0.003790

0.026091
0.025300
0.031960
0.013668
0.014190

=40
SBIAS

-0.08038 0.001074

-0.001620.005374

-03Im 0.002590
-0.015101.017400

-0.025790.039020
0.004206).004283
00109 0.003077
0.00545 0.017023
0.000770 010:90

-0.029320.053411
0.000542 .025842
0600  0.032690
-02000 0.013938
-0.01490®.000710

B:
-0.000758

-0.001260
-0.001094
0.001363

0.001445

0.002391
0.002122
0.005173
0.009774
0.021790

0.021790

0.015147

0.019210
0.028649
0.014900

Table 2: The Use of Variance to Compare the Estimators

T =40

criterion.
T=20
ESTIMATORS B, B SBIAS B.
oLS -0.029770  -0.055928  0.085698
coc -0.024271  -0.026089  0.050360
HILU -0.026970  -0.024769  0.051739
MLGRID -0.025078  -0.025375  0.050453
ML -0.026880  -0.028550  0.055430
oLS 0.032157 -0.023052  0.055209
coc -0.158237  0.007419  0.165656
HILU -0.068225  -0.005345  0.073570
MLGRID 0.045290 0.007323  0.052613
ML 0.044990 0.006860  0.051850
oLS 0.100235 -0.042180  0.142415
coc 0.392290 0.003000  0.395290
HILU -0.021570  0.003600  0.025170
MLGRID 0.133016 0.014556  0.147572
ML 0.141090 0.010210  0.151300
T=20
p  ESTIMATORS B B. SVAR
oLS 0.001147  0.054620 0.055767
coc 0.035619  0.040400 0.076019
0.4 HILU 0.051900  0.039980 0.09188(
MLGRID 0.003440  0.040771 0.044211
ML 0.003640  0.040650 0.04429(
oLS 0.158477  0.106145 0.264622
coc 1.533270  0.035150 1.568420
0.8 HILU 0.230829  0.037640 0.268469
MLGRID 0.132755  0.028100 0.160854
ML 0.135662  0.027930 0.1635932
oLS 1.023950  0.132800 1.156750
coc 15.797080 0.024300 15.821383
0.9 HILU 0.294190  0.024080 0.31827(
MLGRID 0.763048  0.023845 0.786893
ML 0.721825  0.025440 0.7472685
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B:
0.000589

0.002426
0.002581
0.006490
0.000617

0.048130
0.022681
0.023435
0.052073
0.049880

0.369627
0.096750
0.102678
0.367541
0.357940

B2 SVAR
0.02998M30839
0.024204€26630
0.0625 0.026156
0.02381D.04459
0.023260023B77

0.06659(114@20
0.01550038081
0.02155 0.038946
0.08220.084343
0.015400063280

0.10566817595

0.01400010750
0.00390.116648
0.08403.381579
0.014089372029

B:
0.000250

0.000870
0.000858
0.000404
0.000379

0.020279
0.031836
0.031448
0.031712
0.033562

0.176030
0.044410
0.040290
0.246882
0.256888

T=60

B2 SBIAS
-0.035316  0.036074
-0.024480  0.025740
-0.020610  0.021704
-0.021293  0.022656
-0.021960  0.023406
-0.035180  0.037571
-0.008810  0.010932
-0.005680  0.006197
-0.008403  0.018177
-0.037500  0.0178D2
-0.037500  0.059290
0.006220  0.0213p7
-0.006089  0.025299
0.004554  0.033203
-0.004691  0.034300

T=60

B> SVAR

0.025890  0.026140
0.019850  0.0207a7
0.022050  0.022908
0.019816  0.020220
0.019700  0.0200f9

0.047890  0.068169
0.011431  0.0432p7
0.012832  0.044280
0.011580  0.043292
0.011286  0.0448u48

0.086870  0.0262P0
0.010160  0.054570
0.010188  0.050478
0.010043  0.256925
0.010160  0.267048
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p

0.4

0.8

0.9

Table 3: The Use of RMSE to compare the estimators

T=20 T=40 T=60

ESTIMATORS B B: SRMSE B. B: SRMSE B. B. SRMSE
OLS 0.045092 0.240308 0.285400 0.024279 0.173061197340| 0.015830 0.164770 0.180600
COC 0.190284 0.202684 0.392968 0.049397 0.155592400899| 0.029523 0.143000 0.1725pP3
HILU 0.229407 0.201478 0.430885 0.051032 0.153549204581| 0.029312 0.149916 0.1792p8
MLGRID 0.063788 0.203507 0.267295 0.025511 0.1643M.179817| 0.020146 0.142371 0.162517
ML 0.066050 0.203630 0.269680 0.024946 0.153258178204 | 0.019522 0.142064 0.161586
OLS 0.399388 0.326614 0.726002 0.219784 0.25933@179020 | 0.142424 0.221648 0.3640[72
cocC 1.248322 0.187630 1.435952 0.150602 0.12457@75072| 0.178439 0.107278 0.285717
HILU 0.485267 0.194084 0.6793%1 0.153114 0.42450.277657| 0.178411 0.113421 0.290832
MLGRID 0.367160 0.167790 0.534930 0.228201 0.18044.400644| 0.178347 0.107938 0.286285
ML 0.371061 0.167269 0.538300 0.223310 0.124101342111| 0.183505 0.106480 0.289985
OLS 1.016857 0.366850 1.383707 0.608529 0.32638®34015| 0.420135 0.297116 0.7172b1
cocC 3.993867 0.155923 4.149790 0.312074 0.11832330897| 0.211281 0.100989 0.312270
HILU 0.542822 0.155219 0.698041 0.322024 0.9781 0.440221| 0.201640 0.101119 0.3027159
MLGRID 0.883596 0.155103 1.038699 0.606406 0.8284 0.724888| 0.497697 0.100319 0.598016
ML 0.861238 0.159826 1.021064 0.598449 0.118699717148| 0.507705 0.100906 0.6086(11
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