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 Abstract 

A Monte Carlo Study of the small sampling properties of five estimators of a 
linear model with Autocorrelated error terms is discussed. The independent 
variable was specified as standard normal data. The estimators of the slop 

coefficients 2β̂  with the help of Ordinary Least Squares (OLS), increased 

with increased autocorrelation especially when T is small. On the other hand, 

the same slope coefficients 2β̂ , under Generalized Least Squares (GLS) 

decreased with increased autocorrelation when the sample size T is small. 
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1.0 Introduction 

 Approaches to dealing with estimation in Autocorrelated linear models include overall Maximum 
likelihood estimation, Ordinary Least Squares and transformation of variables. When the Autocorrelation 
coefficients are known, usually, the estimation poses no major problems as the underlying variables can 
be transformed to overcome this problem. Different forms of transformation techniques have been 
proposed by different authors. Several authors have different methods of estimating the Autocorrelated 
parameters in situations where the variables are unknown. These error estimates are used as weights in 
estimating β, the regression coefficient. For this study, we used five estimators namely the Cochrane and 
Orcutt estimator (COC), Hildreth and LU (HILU), the maximum likelihood Grid (MLGRID), the 
maximum likelihood (ML) and the Ordinary Least Squares (OLS). All the other estimators apart from the 
Ordinary Least Squares (OLS) estimator are called Generalized Least Squares (GLS) estimators. 
 Asymptotically, each of these estimators are equivalent with identical asymptotic properties. But 
in finite samples, such as in this work, Park and Mitchell (1980) [7] have argued that the estimation 
methods that use the P transformation matrix are generally more efficient than the estimators that use P 
transformation matrix.  Kramer (1980) [4] in his paper stated that the efficiency of these estimators 
depends much on the specification of the independent variable used in the experiment and went ahead to 
show that some of the estimators proposed in the literature for example, Cochrane-Orcutt, has lower 
efficiency than OLS especially when the independent variable has some-trend. 
 Iyaniwura and Nwabueze (2004) [2] in their work, estimated the autocorrelated error model with 
Gross National Product (GNP) data as the independent variable and found out that the estimators COC 
and HILU performed worse than OLS while MLGRID and ML performed better than OLS. Also, 
Nwabueze (2005) [6] in a work on Autocorrelated error linear model discovered that when the 
independent variable is autoregressive, the variance of the slope coefficient of the GLS methods increase 
very slowly while the variance of the slope coefficient of the OLS increases very sharply with increasing 
value of ρ and was always larger than the variance of the GLS estimators. 
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 Some authors like Macshiro (1976) [5], Beach and Mackinnon (1978) [1] and Park and Mitchell 
(1980) [7] have investigated the efficiency of some of these estimators over OLS. This study broadens 
and deepens our understanding of the finite sampling properties of some of the estimators of linear 
models with auto-correlated error terms prevalent in the literature and examines the effects of standard 
normal data as the independent variable on the performances of these estimators. Also, this work 
investigates the effects of increased sample size and the degree of the Autocorrelation coefficient of the 
error terms on the performances of these estimators. 
 

2.0 Estimation methods 
 Consider the common linear econometric model. 
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On multiplying the model 2.1 by some non-singular transformation matrix P of order TXT, we obtain. 
    PY = PXβ + PU     (2.2) 
But the variance matrix of the disturbance in equation (2.2) is E (PUU1P) = σ2 PΩP1, since E(PU) = 0. 
Therefore, if it were possible to specify P such that P ∩ P1 = 1, then resulting OLS estimates of the 
transformed variable PY in equation (2.2) have all the optimal properties of OLS and could be validly 
subjected to the usual inference procedures (Johnson and Dinardo, 1997) [3].  Applying OLS to equation 
(2.2) results in minimizing the quadratic form 
    U1Ω-1U= (Y -Xβ)1Ω-1 (Y-Xβ)    (2.3) 

with optimal solution as  ( ) ( ) 011111 =Ω−Ω=Ω YXXXUU β
δβ
δ

   (2.4) 

which gives    β̂ (GLS) = (X1Ω-1X)-1 X1Ω-1Y    (2.5) 

The variance covariance matrix is given as var( )β̂  = σ2(X1Ω-1X)-1.  This estimator β̂ (GLS) is known as 
the Aitken or Generalized Least Squares (GLS) estimator. If we assume normality for the error terms, the 
likelihood function is given by: 
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where |Ω| is the determinant of Ω. Optimizing the likelihood function of equation (2.6) with respect to β, 
means maximizing the weighted sum of squares and we obtain  

    β̂ (GML) = (X1Ω-1X)-1X1Ω-1Y    (2.7)  

In obtaining β̂ (OLS) and β̂ (GLS), we assume that Ω is known, when Ω is not known, we resort to 

estimating Ω by Ω̂  in which case, we obtain an estimated Generalized Least Square (EGLS) or estimated 

generalized maximum likelihood (EGLM) estimator and therefore, β̂ (GLS) = (X1 11 )ˆ −−Ω X X1Ω-1Y.  
For this model in equation (2.1), the TXT covariance matrix of the error vector is 
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where ( )2

2
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−

=u . To search for a suitable transformation matrix P*, we consider the following 

matrix P* of order (T - !)XT defined by 
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 P*1P* gives (1 - ρ2) Ω-1 with -ρ2 instead of 1 as the first element. Next, we consider another TXT 
transformation matrix P obtained by adding a new first row with 1 - ρ2 in the first position and zero 
elsewhere. 
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P1P = (1-ρ2) Ω-1 
P* and P differ only in the treatment of the first observation. P* is much easier to use provided one is 
prepared to put up with its treatment of the first observation. It has been shown that when T is large, the 
difference is negligible but in small samples such as in this work, the difference is significant. Such 
transformations give rise to different methods of estimation. These methods are broadly classified into 
those that use P* transformation matrix such as Cochrane-Orcutt (COC) and Hildreth and LU(HILU) 
estimators and those that use P transformation matrix such as Maximum Likelihood (ML)  estimators of 
Beach and Mackinon (1978) [1] and Maximum Likelihood method Grid (MLGRID). The values of the 
autocorrelation coefficient of the error term rho (ρ) used were 0.4, 0.8 and 0.9.  These values were chosen 
in order to determine the effect of autocorrelation on the performance of the estimators 
 
3.0 Method of simulation  
In econometrics, while asymptotic properties of estimators obtained by using various econometric 
techniques are deduced from postulates, an approach that is often described as analytical, small sample 
properties of such estimators have always been studied from simulated data known as Monte Carlo 
studies. The use of this approach is due to the fact that real life observations on economic variables are in 
most cases plagued by one or all of the problems of non-spherical disturbances and measurement errors. 
This work uses Monte Carlo Approach. The parameter values of β1 and β2 in the  
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model (2.1) were fixed at (1,1). To generate multivariate normal vectors to be used for this study, the 
autocorrelated error term Ut = ρUt-1 + γt was first generated. 
 After generating the autoregressive error terms, a set of data that is standard normal was 
generated as the independent variable. Thereafter, the multivariate normal dependent vectors Y were 
computed using equation (2.1). 
 The generation of the error terms, the independent variable and the computations of the 
dependent variable are made using a package for econometric studies called time series processor (TSP). 
The simulation experiment was replicated 50 times. The sample sizes were varied from 20 to 40 to 60 in 
order to test the effect of sample size on the performance of the estimators. Since this study is 
investigating the performance of the estimators when the error term is autocorrelated, three different 
estimates of the error term ρ were used for the study namely when ρ = 0.4, 0.8 and 0.9. Thereafter, 
different estimation methods were applied to the data using the AR (1) function of the TSP Software 
package on an IBM Computer at the center for econometric and Allied research (CEAR), University of 
Ibadan. The performance of the simulated values from the original data series based on the estimators 
were then assessed by simulation statistics. The simulation statistics used in assessing the performances of 
the estimators in this study are: bias, sum of bias of both the intercept and slope coefficients (SBIAS), the 
variance, sum of variance of both the intercept and slope coefficient (SVARS), the root mean square error 
(SRMSE), and the sum of root mean square error (SEMSE) of both the intercept and slope coefficients. 
 
4.0 Results and discussions  
 Tables 1-3 summarize the relative performances of the five estimators using the criteria, Bias, 
sum of bias (SBIAS), variance (VAR), sum of variance (SVAR), root mean square error (RMSE) and 
sum of root mean square error (SRMSE). In the first column are the three values of the autocorrelation 
coefficient ρ used for our study.  The performances of these estimators were also compared using 
different sample sizes so the first row of the tables shows the different sample sizes used for the 
experiment. The results of our experiment reveal that of the basis of BIAS property, the GLS method 
compares very well with the OLS and with one another when the size of the sample and degree of 
autocorrelation are small. 
 In this case, the OLS and the GLS methods underestimate the slope and the intercept coefficients 
(i. e when ρ and T are both small). These biases are observed to decrease with increased sample size. As 
ρ increases and T is small, the biases for COC increase. This shows that the effect of degree of 
autocorrelation on the comparative performance of the estimators is of some significance when T is small. 
The five methods yield the SBIAS of 0.142415, 0.395290, 0.025170, 0.147572 and 0.151300 for T =20 
and ρ = 0.9 for OLS, COC, HILU, MLGRID, and ML respectively (see Table 1). 
 
5.0 Conclusion 
 An evaluation of the estimators using the least variance criterion reveals that: 
1. The estimates of the slope coefficient β2 (OLS) increases with increased autocorrelation 
especially when T is small. 
2. The estimates of the slope coefficient β2 (GLS) decreases with increased autocorrelation when T 
is small. 
 The reason for this difference between OLS and GLS estimators in the estimator of the slope 
coefficient β2 could be due to the fact that the Generalized Least Squares (GLS) estimators correct the 
autocorrelation of the error term unlike the Ordinary Least Square (OLS) estimator which assume that the 
error terms are uncorrelated. 
3. In estimating this model when T is small and ρ is large, the estimators in order of preference are: 
HILU, ML, MLGRID, OLS and COC (ρ = 0.9, T = 20) and  
4. In estimating this model when T is large, the order of preference is COC, HILU, ML, MLGRID 
and OLS. 
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The same conclusions are reached when the estimators are evaluated using the root mean square error 
criterion. 

Table 1: The Use of Bias to Compare the Estimators 

   T = 20     T = 40      T = 60 

ρ ESTIMATORS ββββ1 ββββ2 SBIAS ββββ1 ββββ2 SBIAS ββββ1 ββββ2 SBIAS 

 OLS -0.029770 -0.055928 0.085698 0.000689 -0.000385 0.001074 -0.000758 -0.035316 0.036074 

 COC -0.024271 -0.026089 0.050360 0.003754 -0.001620 0.005374 -0.001260 -0.024480 0.025740 

0.4  HILU -0.026970 -0.024769 0.051739 0.004821 -0.001167 0.005988 -0.001094 -0.020610 0.021704 

 MLGRID -0.025078 -0.025375 0.050453 0.002090 -0.000500 0.002590 0.001363 -0.021293 0.022656 

 ML -0.026880 -0.028550 0.055430 0.002300 -0.015100 0.017400 0.001445 -0.021960 0.023406 

           

 OLS 0.032157 -0.023052 0.055209 0.013230 -0.025790 0.039020 0.002391 -0.035180 0.037571 

 COC -0.158237 0.007419 0.165656 0.000077 0.004206 0.004283 0.002122 -0.008810 0.010932 

0.8 HILU -0.068225 -0.005345 0.073570 0.002958 -0.000119 0.003077 0.005173 -0.005680 0.006197 

 MLGRID 0.045290 0.007323 0.052613 0.001573 0.015450 0.017023 0.009774 -0.008403 0.018177 

 ML 0.044990 0.006860 0.051850 0.003790 0.000770 0.010590 0.021790 -0.037500 0.017802 

           

 OLS 0.100235 -0.042180 0.142415 0.026091 -0.029320 0.053411 0.021790 -0.037500 0.059290 

 COC 0.392290 0.003000 0.395290 0.025300 0.000542 0.025842 0.015147 0.006220 0.021367 

0.9 HILU -0.021570 0.003600 0.025170 0.031960 0.000730 0.032690 0.019210 -0.006089 0.025299 

 MLGRID  0.133016 0.014556 0.147572 0.013668 -0.000270 0.013938 0.028649 0.004554 0.033203 

 ML  0.141090 0.010210 0.151300 0.014190 -0.014900 0.000710 0.014900 -0.004691 0.034300 

Table 2: The Use of Variance to Compare the Estimators 

 T = 20     T = 40    T = 60 

ρ ESTIMATORS ββββ1 ββββ2 SVAR ββββ1 ββββ2 SVAR ββββ1 ββββ2 SVAR 

 OLS 0.001147 0.054620 0.055767 0.000589 0.029980 0.030539 0.000250 0.025890 0.026140 

 COC 0.035619 0.040400 0.076019 0.002426 0.024204 0.026630 0.000870 0.019850 0.020717 

0.4 HILU 0.051900 0.039980 0.091880 0.002581 0.002575 0.026156 0.000858 0.022050 0.022908 

 MLGRID 0.003440 0.040771 0.044211 0.006490 0.023810 0.04459 0.000404 0.019816 0.020220 

 ML 0.003640 0.040650 0.044290 0.000617 0.023260 0.023877 0.000379 0.019700 0.020079 

           

 OLS 0.158477 0.106145 0.264622 0.048130 0.066590 0.114720 0.020279 0.047890 0.068169 

 COC 1.533270 0.035150 1.568420 0.022681 0.015500 0.038181 0.031836 0.011431 0.043267 

0.8 HILU 0.230829 0.037640 0.268469 0.023435 0.015511 0.038946 0.031448 0.012832 0.044280 

 MLGRID 0.132755 0.028100 0.160855 0.052073 0.032270 0.084343 0.031712 0.011580 0.043292 

 ML 0.135662 0.027930 0.1635932 0.049880 0.015400 0.065280 0.033562 0.011286 0.044848 

           

 OLS 1.023950 0.132800 1.156750 0.369627 0.105668 0.475295 0.176030 0.086870 0.026290 

 COC 15.797080 0.024300 15.821383 0.096750 0.014000 0.110750 0.044410 0.010160 0.054570 

0.9 HILU 0.294190 0.024080 0.318270 0.102678 0.013970 0.116648 0.040290 0.010188 0.050478 

 MLGRID 0.763048 0.023845 0.786893 0.367541 0.014038 0.381579 0.246882 0.010043 0.256925 

 ML 0.721825 0.025440 0.747265 0.357940 0.014089 0.372029 0.256888 0.010160 0.267048 
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Table 3: The Use of RMSE to compare the estimators 

   T = 20     T = 40   T = 60 

ρ ESTIMATORS ββββ1 ββββ2 SRMSE ββββ1 ββββ2 SRMSE ββββ1 ββββ2 SRMSE 

 OLS 0.045092 0.240308 0.285400 0.024279 0.173061 0.197340 0.015830 0.164770 0.180600 

 COC 0.190284 0.202684 0.392968 0.049397 0.155595 0.240499 0.029523 0.143000 0.172523 

0.4  HILU 0.229407 0.201478 0.430885 0.051032 0.153549 0.204581 0.029312 0.149916 0.179228 

 MLGRID 0.063788 0.203507 0.267295 0.025511 0.154306 0.179817 0.020146 0.142371 0.162517 

 ML 0.066050 0.203630 0.269680 0.024946 0.153258 0.178204 0.019522 0.142064 0.161586 

           

 OLS 0.399388 0.326614 0.726002 0.219784 0.259336 0.479120 0.142424 0.221648 0.364072 

 COC 1.248322 0.187630 1.435952 0.150602 0.124570 0.275172 0.178439 0.107278 0.285717 

0.8 HILU 0.485267 0.194084 0.679351 0.153114 0.124543 0.277657 0.178411 0.113421 0.290832 

 MLGRID 0.367160 0.167790 0.534950 0.228201 0.180443 0.400644 0.178347 0.107938 0.286285 

 ML 0.371061 0.167269 0.538300 0.223310 0.124101 0.347411 0.183505 0.106480 0.289985 

           

 OLS 1.016857 0.366850 1.383707 0.608529 0.326386 0.934915 0.420135 0.297116 0.717251 

 COC 3.993867 0.155923 4.149790 0.312074 0.118323 0.430397 0.211281 0.100989 0.312270 

0.9 HILU 0.542822 0.155219 0.698041 0.322024 0.118197 0.440221 0.201640 0.101119 0.302759 

 MLGRID  0.883596 0.155103 1.038699 0.606406 0.118482 0.724888 0.497697 0.100319 0.598016 

 ML  0.861238 0.159826 1.021064 0.598449 0.118699 0.717148 0.507705 0.100906 0.608611 
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