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Abstract

The multivariate kernel density estimator (MKDE) for the analysis of data in
more than one dimension is presented. This removes the cumbersome nature
associated with the interpretation of multivariate results when compared with
most common multivariate schemes. The effect of varying the window width
in MKDE with the attendant consequence of distortion in shape especially
when the window width is large and when the kernel itself does not fit into the
family to which the observations are drawn is also examined.

Keywords: Scatter plot, Histogram, Kernel density, Windowdt, MKDE

pp 351 - 356

1.0 Introduction
Let X;, X5..., Xy be an independent, identically distributed, real valued random ednaph a
random variable X, with probability density functibnThe univariate kernel estimator for X is given as:

n 14 (X=X
f(x)=—> k : 1.1
(¥ nhi; ( n ] (1)
wherek(x) is a symmetric kernel satisfyinpk(x)dle and h is the window width. This estimator has

found applications in several fields of human endeavours, see Faddg,1898) [7] and Dinardo and
Tobias (2001) [5]. Nonparametric density estimation derivegpdisularity from a combination of
circumstances such as: the growing importance of electramtputer in statistical research, the
availability of statistical packages, and the advantagegsaphical presentation of information. Literally,
the kernel estimator in (1.1) is a sum of ‘bumps’ placeti@bbservation X The shape of the bumps is
determined by the kernel function k that is used, while the windigithvia determines the width of the
bumps and hence the smoothness$. oThe choice of window widtHj, is crucial in KDE, unlike the
choice of the kernek which is not too important except for some special cases\Wsewl and Jones
(1995) [25], Ogbonmwan and Osemwenkhae (1997) [13] and Osemwenkhae (B)03)He univariate
kernel as defined in (1.1) has received a lot of attention from statistithough multivariate data seem to
abound more in real life, see Silverman (1986) [21].

Given a multivariate data set (1.2),

Xi :(Xil,xiz,...,xid ); i =1Dn, (1.2)
our interest is to estimate the underlying density correspondirfy.2). Several methods have been
proposed in literature for estimating the density of (1.2). I pliper, the following are examined: (i)

methods of estimating multivariate densities with their iptesssetbacks (i) the multivariate kernel
estimator and (iii) the influence of largeon the distribution of some common multivariate kernels.

2.0.  Methods of estimating multivariate densities
The oldest well known method of estimating densities is the Histogranodefn excellent
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discussion of this method can be found in the work of Louise-Adolphdl@eras presented in Stigler
(1986) [22]. Traditionally, the histogram has been used to providisual clue to the underlying

distribution off, see Izenman (1991) [11]. Suppddeas supporQ :[a, b], partition [a, b] into non-
overlapping bin widths given bly,, where h, =(t t ) andi =1 (Im. If I,(.) is the indicator
function for tha™ bin, then the histogram estimator is given as

n,i+l n,i

O 1 m
FO)=——> Nili(x) (2.1)
nhn i3
m
wheren = z N; is the sample sizé\; is the size of theéh sample.
i=1

Basically, the choice of origin and the length of the Hpinaffects its smoothing procedure: smaller bin
width allows more detailed information about the distribution toXpmsed, hence there is the tendency
for the occurrence of spurious noise at the tail of the disimitbut Also, the larger the bin width the
smoother the curve and hence provides less details about the underlyibgtitiat

The histogram estimator (2.1) lacks accuracy when used iterclsalysis and nonparametric
discriminant analysis, see Silverman (1986) [21], and alsas laoktinuities at cell boundaries when
derivatives of estimates are required, see Hand (1982) [1@jothAr major pitfall of the histogram
estimator is that it does not allow the drawing of contour dmgrathe representation of data and so it
does not work well in multivariate data, see Tukey and T(k@81) [24]. The sensitivity of histograms
shapes to the choice of origin is a more serious defect as st&ibdebiman (1986) [21] and Devroye and
Lugosi (1997 [3], 2001 [4]).

Another method of multivariate density method is the scatts.pBScott et al (1978) [20] and
Silverman (1986) [21] pointed out that other methods of densitmatstin such as the kernel methods
will detect or highlight features that are not obvious in tater plot. In most cases, if the data set is
very large, the resulting dense picture is difficult teiptet and may also be expensive in time and ink to
produce the scatter plot. Scott and Thompson (1983) [19] gave a anodafional argument for using
the scatter plot as simply an attempt to discern featardgféd underlying model of the data. The scatter
plot fails in the estimation of multivariate densities.

Other methods of multivariate density estimation include terast neighborhood (NN), the
maximum penalized likelihood (MPL) and the length biased data agpr@®8DA). Fundamentally,
these methods among other things, failed to be a ppgfesee Silverman (1986) [21] and Patil et al
(1991) [18].

3.0  The Multivariate Kernel Estimator

The mathematical tractability and wide applicability of tineivariate kernel estimator are
inherited by the multivariate kernel estimator, see TaféB89) [23] and Jones, et al (1999) [12]. Our
attention is on the multivariate kernel density estimator defined by

(% =i2k{i(x—xi)} (3.1)
nhd hd

wherek is defined for a d-dim random variable X denoted<hy = 1(1)n, de k(x)dx=1 and h is the

smoothing parameter or the window width. In the univariate ¢heesmoothing parametéris very
crucial. The fixed univariate kernel estimator allows the afsa single window width, this is however
not always true in the multivariate case where there armus options of choosing the smoothing
parameteh, see Cacoullos (1966) [1], Epanechnikov (1969) [6], Deheuvel (127, 7Fykunaga (1972)
[8] and Hall, et al (1995) [9] for possible suggestions. Tloekvof Ogbonmwan and Osemwenkhae
(2000) [14] and Osemwenkhae (2003) [15] showed that if the kdrime(3.1),
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satisfies the following regularity conditions:
0 de k(t)dt=1

(ii) detm‘lk(t)dt=o and

(iii) J-Rd tMk(t)dt =V 20 form=1, 2, 3, ..., <0, then the optimah is given as
1 1
(m)2|d+a -~ o g e
Mopt = o vmd+2mﬁd+4{j(mmf (x))zdx} n d+2m (3.2)
m

and the corresponding Mean Integrated Square Error (MISE) is given by

d q d
0 ome1f om |deam| 20 2T d+2 -
MISEf (x) = — v d+2m ﬂd+2m{j (Dmf(x))zdx} Mip d+2m (33
2m | (m)
2 om oM
where 5 = J'k(t) dt, O0M=——+..+—— anddis the dimension oX.
ox™ ox;)'

Equations (3.2) and (3.3) are essentially very important, sincer¢hayve the burden of calculating the
value ofhyy; for any even order of the bias when estimating the density ofmaftjvariate kernel. The
works of Osemwenkhae (2003) [15] and Osemwenkhae and Ogbonmwan (2003a, [1] b [17]) teaealed
the global error resulting from (3.3) is significantly reducedthese successive higher order values of
the smoothing parameter

Two common symmetric multivariate kernels of interesttaeed-dim standard normal density
given by

-d
Kg(x) = (277) éexp{—%xij, X ORY (3.4)
and the d-dim Epanechnikov kernel given by

1.1 T

—Cqld+2)1-X"X),.
Ke(x) =12 @ (d+2)¢ Yit xTx <1 (3.5)

0 otherwise
where in (3.5), ¢is the volume of the unt-dim sphere.
We shall examine the benefits that exist in using the MKDEsgadifically the kernels in (3.4),

(3.5) and similar ones in the next two sections. Preciselyhtmmesof k(x) and its inherent analyticity is
inherited by f (X) of (3.1). Furthermore, since each of these kernels in (3.4{3a)darepdfs, then the

estimate constructed by this method will also be a pnogier

3.1 Example
As an illustration, let us consider the 2-dim kernels in (3.4) andl 83.6ur test kernels which for

(g)

d = 2 respectively become K (X, X0) = Zie (3.6)
71
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E[1— (x12 + xz)], if x12 + x% <1
and  Kg(X,%0) =<7 (3.7)

0 otherwist

1
The value ofJ- (sz (x))zdx of (3.2) and (3.3) i:2— if m=2: this is useful in estimating the value of
T

optimal window widthh. If fis the -dim normal density, (3.2) becomes

hopt = [47;8V2"2]%’ 06 =17m e (3.8)
However, if the kernel of choice is th-dim Epanechinkov kernel in (3,his kernel is equal to zero

the areax12 + x% >1 and only observations that fall into the ¢

. 2 2 2

(o 9): (=X P+ (y-vi P < 12}

will influence the probability density function.f we allow the smoothing parameth to be a single
value in both coordinate directions, and applynitstimulated bivariate normal distribution withx) = 0

and Varg) = 2, the density off(x) is obtained. In particular, Kis the kernel in (3)7and the values h

chosen subjectively as = 0.3, 0.5, 2.9, and 3.9, the graphs shown in Egura— d are obtained.
Similarly, if the kernel of our choice is th-dim standard normal in (3.6then (3.2) reduces

hopt = 0.96351_%3 (3.9)
Applying (3.9 on the simulated bivariate normal distributiorg ebtain Figures 2—d.

Figure 1la — d 2-dim Epanechnikov kernel for different valueshof
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4.0 Discussion of findings

The multivariate histogram does not allow for the drawinguwfes because of discontinuous
boundaries but the multivariate kernel density estimation permits théendrafwcurves. While the scatter
plot is only a pointer to the density ffthe multivariate KDE removes the cumbersome nature of the
interpretation of results associated with multivariatetecglots. The fixed value df in the estimation
of the density of gives the distribution a ragged nature (see Figures 1c gnalttebugh the adaptive
schemes tend to handle some of these lapses, with itself failing to be agatope

Another observation is that when the optimal window width émsll as in the Epanechnikov
kernel b = 0.3 and 0.5), the structure of the densities obtained reflectsmtterlying density of the data
set used. Whehwas increased in this kernel, the shape of the distributioiostasThis is however not
true if h increases when the 2-dim normal density was used. This affiratsthe normal density
approximates most distributions especially whes large for any dimension of X.

5.0 Conclusion
Much work has been done in univariate KDE, but the multivaridbE Kstill needs to be
exploited. Clearly, the choice df greatly affects the distribution of . We have also shown the

preference of the multivariate KDE to other familiar methoélsnultivariate density estimation. In
conclusion, there is a great benefit from multivariate KDE idening the way it handles the estimation
of densities in more than one dimension.
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