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Abstract 
 

The multivariate kernel density estimator (MKDE) for the analysis of data in 
more than one dimension is presented.  This removes the cumbersome nature 
associated with the interpretation of multivariate results when compared with 
most common multivariate schemes.  The effect of varying the window width 
in MKDE with the attendant consequence of distortion in shape especially 
when the window width is large and when the kernel itself does not fit into the 
family to which the observations are drawn is also examined. 
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1.0 Introduction 
 Let X1, X2…, Xn be an independent, identically distributed, real valued random sample from a 
random variable X, with probability density function f.  The univariate kernel estimator for X is given as: 

    






 Χ−
= ∑

=

∧

h

x
k

nh
xf i

n

i 1

1
)(     (1.1) 

where k(x) is a symmetric kernel satisfying ∫ = 1)( dxxk  and h is the window width.  This estimator has 

found applications in several fields of human endeavours, see Fadda, et al (1998) [7] and Dinardo and 
Tobias (2001) [5].  Nonparametric density estimation derives its popularity from a combination of 
circumstances such as: the growing importance of electronic computer in statistical research, the 
availability of statistical packages, and the advantages of graphical presentation of information.  Literally, 
the kernel estimator in (1.1) is a sum of ‘bumps’ placed at the observation Xi.  The shape of the bumps is 
determined by the kernel function k that is used, while the window width h determines the width of the 
bumps and hence the smoothness of f.  The choice of window width, h, is crucial in KDE, unlike the 
choice of the kernel k which is not too important except for some special cases, see Wand and Jones 
(1995) [25], Ogbonmwan and Osemwenkhae (1997) [13] and Osemwenkhae (2003) [15].  The univariate 
kernel as defined in (1.1) has received a lot of attention from statisticians though multivariate data seem to 
abound more in real life, see Silverman (1986) [21]. 
Given a multivariate data set (1.2), 
    ( ) niXXXX idiii )1(1;,,, 21 == K ,   (1.2) 

our interest is to estimate the underlying density corresponding to (1.2).  Several methods have been 
proposed in literature for estimating the density of (1.2).  In this paper, the following are examined: (i) 
methods of estimating multivariate densities with their possible setbacks (ii) the multivariate kernel 
estimator and (iii) the influence of large h on the distribution of some common multivariate kernels. 
 
2.0. Methods of estimating multivariate densities 
 The oldest well known method of estimating densities is the Histogram method.  An excellent  
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discussion of this method can be found in the work of Louise-Adolphe Bertillon, as presented in Stigler 
(1986) [22].  Traditionally, the histogram has been used to provide a visual clue to the underlying 
distribution of f, see Izenman (1991) [11].  Suppose f has support [ ]ba,=Ω , partition [a, b] into non-

overlapping bin widths given by hn, where ( )ininn tth ,, −= +1  and i = 1 (1)m.  If  iΙ (.) is the indicator 

function for the i th bin, then the histogram estimator is given as 
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 is the sample size, Ni is the size of the ith sample. 

Basically, the choice of origin and the length of the bin hn, affects its smoothing procedure: smaller bin 
width allows more detailed information about the distribution to be exposed, hence there is the tendency 
for the occurrence of spurious noise at the tail of the distribution.  Also, the larger the bin width the 
smoother the curve and hence provides less details about the underlying distribution. 
 The histogram estimator (2.1) lacks accuracy when used in cluster analysis and nonparametric 
discriminant analysis, see Silverman (1986) [21], and also lacks continuities at cell boundaries when 
derivatives of estimates are required, see Hand (1982) [10].  Another major pitfall of the histogram 
estimator is that it does not allow the drawing of contour diagram in the representation of data and so it 
does not work well in multivariate data, see Tukey and Tukey (1981) [24].  The sensitivity of histograms 
shapes to the choice of origin is a more serious defect as stated in Silverman (1986) [21] and Devroye and 
Lugosi (1997 [3], 2001 [4]). 
 Another method of multivariate density method is the scatter plots.  Scott et al (1978) [20] and 
Silverman (1986) [21] pointed out that other methods of density estimation such as the kernel methods 
will detect or highlight features that are not obvious in the scatter plot.  In most cases, if the data set is 
very large, the resulting dense picture is difficult to interpret and may also be expensive in time and ink to 
produce the scatter plot.  Scott and Thompson (1983) [19] gave a more foundational argument for using 
the scatter plot as simply an attempt to discern features for the underlying model of the data.  The scatter 
plot fails in the estimation of multivariate densities. 
 Other methods of multivariate density estimation include the nearest neighborhood (NN), the 
maximum penalized likelihood (MPL) and the length biased data approach (LBDA).  Fundamentally, 
these methods among other things, failed to be a proper pdf, see Silverman (1986) [21] and Patil et al 
(1991) [18]. 
 
3.0 The Multivariate Kernel Estimator 
 The mathematical tractability and wide applicability of the univariate kernel estimator are 
inherited by the multivariate kernel estimator, see Taylor (1989) [23] and Jones, et al (1999) [12].  Our 
attention is on the multivariate kernel density estimator defined by 
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where k is defined for a d-dim random variable X denoted by Xi, i = 1(1)n, ∫ =dR
dxxk 1)(  and h is the 

smoothing parameter or the window width.  In the univariate case, the smoothing parameter h is very 
crucial.  The fixed univariate kernel estimator allows the use of a single window width, this is however 
not always true in the multivariate case where there are various options of choosing the smoothing 
parameter h, see Cacoullos (1966) [1], Epanechnikov (1969) [6], Deheuvel (1977) [2], Fukunaga (1972) 
[8] and Hall, et al (1995) [9] for possible suggestions.  The work of Ogbonmwan and Osemwenkhae 
(2000) [14] and Osemwenkhae (2003) [15] showed that if the kernel, k in (3.1),  
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satisfies the following regularity conditions: 
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and the corresponding Mean Integrated Square Error  (MISE) is given by 
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Equations (3.2) and (3.3) are essentially very important, since they remove the burden of calculating the 
value of hopt for any even order of the bias when estimating the density of any multivariate kernel.  The 
works of Osemwenkhae (2003) [15] and Osemwenkhae and Ogbonmwan (2003a, [1] b [17]) revealed that 
the global error resulting from (3.3) is significantly reduced for these successive higher order values of 
the smoothing parameter h. 
 Two common symmetric multivariate kernels of interest are the d-dim standard normal density 
given by 
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and the d-dim Epanechnikov kernel given by 
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where in (3.5), Cd is the volume of the unit d-dim sphere. 
 We shall examine the benefits that exist in using the MKDE and specifically the kernels in (3.4), 
(3.5) and similar ones in the next two sections.  Precisely, the shape of k(x) and its inherent analyticity is 

inherited by )(ˆ xf  of (3.1).  Furthermore, since each of these kernels in (3.4) and (3.5) are pdfs, then the 
estimate constructed by this method will also be a proper pdf. 
 
 
3.1 Example 
 As an illustration, let us consider the 2-dim kernels in (3.4) and (3.5) as our test kernels which for 

d = 2 respectively become  
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chosen subjectively as h = 0.3, 0.5, 2.9, and 3.9, the graphs shown in Figures 1a 
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Applying (3.9) on the simulated bivariate normal distribution, we obtain Figures 2a 
 

Figure 1a – d: 
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However, if the kernel of choice is the d-dim Epanechinkov kernel in (3.7), this kernel is equal to zero in 

and only observations that fall into the area 

) ( ) ( ) }222:, hyxyx ii ≤Υ−+Χ−   

will influence the probability density function.  If we allow the smoothing parameter 
value in both coordinate directions, and apply it on simulated bivariate normal distribution with E(

) is obtained.  In particular, if k is the kernel in (3.7) and the values of 
= 0.3, 0.5, 2.9, and 3.9, the graphs shown in Figures 1a 

Similarly, if the kernel of our choice is the 2-dim standard normal in (3.6), then (3.2) reduces to

   (3.9) 

) on the simulated bivariate normal distribution, we obtain Figures 2a – d.

: 2-dim Epanechnikov kernel for different values of h 
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(3.7) 
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(3.8) 

), this kernel is equal to zero in 

will influence the probability density function.  If we allow the smoothing parameter h to be a single 
value in both coordinate directions, and apply it on simulated bivariate normal distribution with E(x) = 0 
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         Figure 1d 
 
 

- d: 2-dim Normal kernel for different values of h 
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4.0 Discussion of findings 
 The multivariate histogram does not allow for the drawing of curves because of discontinuous 
boundaries but the multivariate kernel density estimation permits the drawing of curves.  While the scatter 
plot is only a pointer to the density of f, the multivariate KDE removes the cumbersome nature of the 
interpretation of results associated with multivariate scatter plots.  The fixed value of h in the estimation 
of the density of f gives the distribution a ragged nature (see Figures 1c and 1d), although the adaptive 
schemes tend to handle some of these lapses, with itself failing to be a proper pdf. 
 Another observation is that when the optimal window width h is small as in the Epanechnikov 
kernel (h = 0.3 and 0.5), the structure of the densities obtained reflects the underlying density of the data 
set used.  When h was increased in this kernel, the shape of the distribution was lost.  This is however not 
true if h increases when the 2-dim normal density was used.  This affirms that the normal density 
approximates most distributions especially when n is large for any dimension of X. 
 
5.0 Conclusion 
 Much work has been done in univariate KDE, but the multivariate KDE still needs to be 

exploited.  Clearly, the choice of h greatly affects the distribution of f
)

.  We have also shown the 
preference of the multivariate KDE to other familiar methods of multivariate density estimation.  In  
conclusion, there is a great benefit from multivariate KDE considering the way it handles the estimation 
of densities in more than one dimension. 
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