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The arbitrary nature of the terminating condition in an existing 
routine in the ‘computation of oscillating integrals’ [7] is 
examined and changed.  In fact the terminating condition is 
made integrand dependent.  The new routine is demonstrated to 
show that it is a generalization of the existing routine. 
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1.0 Introduction 
 Robert Piessens and Maria Branders have described their routine in [7] for adaptive quadrature 
for automatic computation of oscillating integrals.  The steps taken by the two authors are as follow: 

(i) They considered the integrations of both  

     dxxfwxws
b

a
)(sin)( ∫=    (1.1) 

and    

   dxxfwxwc
b

a
)(cos)( ∫=     (1.2) 

with a user – specified tolerance a∈  or relative tolerance r∈ . 

(ii) With the main procedure for evaluating    

    dxxfxwws
jIj )()(sin)(1 ∫≈     (1.3) 

(iii) a method for calculating )(w
jI∈  an estimate for the error 

    ∫−=
jIjIj dxxfwxwse )(sin)(    (1.4) 

so that the formal algorithm is then 
(a) Let      
     I = [a, b]     (1.5) 
Calculate )(and)( wewS II  if    

     { })(,max)( wseawe IIaI ≤    (1.6) 
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The computation is terminated and )(wsI  is returned as the approximate value of s(w) otherwise the 
interval is divided into two subintervals I1 and I2. 
(b) At step n of the algorithm ( )nn −−−= ,2,1  the interval is divided into n subintervals  
 
 
 

njI j −−−= 2,1  for each of the values )(and)( wews
jIjI  are known from previous steps or must 

be calculated. 
 
Set   

    ∑
=

=
n
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)(σ      (1.7) 

and  
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=
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j
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)(     (1.8) 

if  

     { }nran 6,max ∈∈=∈     (1.9) 

nσ  is returned as an approximate value of s(w) and the integration is terminated. 

Otherwise, the interval Ik on which    
 
   { }njwewe

jIkI −−−== ,2,1),(max)(    (1.10) 

 
is divided into two equal subintervals.  We have next n + 1 subintervals and this leads to steps n + 1 of the 
algorithm.  Details of the method of evaluating the integral is as follows 
Let [ ]βα ,=jI  an arbitrary subinterval [7].  Then  

( ){ ( ) dtttwccdxxfwx
jI

)(sincos)(sin
1

111 φµ∫∫ −
= ( ) ( )



+ ∫− dtttwc )(cossin

1

11 φµ  (1.11) 

where      
     ( ) 2/1 αβ −=c     (1.11a) 
 
     ( ) 2/2 αβ +=c     (1.11b) 
 
     wc1=µ      (1.11c) 
 
and    
     ( )tccft 12)( +=φ     (1.11d) 
 
Furthermore they considered the truncated chebyshev series approximation 
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with the single prime denoting that the first term is taken with the factor ½ and where 
 

    
12

cos

12

cos

6

1 12

0
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ππφ 






= ∑
=

   (1.13) 

 
 
where the double prime indicates that both the 1st and last term are taken with a factor ½ [3, 7].  Putting 
(1.13) in (1.12) results in equation (1.14) 

 ( ) ( )( )∑
=

+=
12

0
22 sincos)(

j
jjjjIjI cwcswcacwS    (1.14) 

where  

     ( )∫−=
1

1
)(sin dttTtS jj µ    (1.15) 

and   

    ( )∫−=
1

1
)(cos dttTtc jj µ     (1.16) 

These integrals are computed using the three term recurrence relations 

  ( )( ) ( )( ) jj cjjcjj 2_24221 222
2

2 −−−−− + µµ  

   ( )( ) ( ) µµµµ cos48sin2421 2
2

2 −−=+++ − jcjj j   (1.17) 

and ( )( ) ( )( ) jj sjjsjj 2_24221 222
2

2 −−−−− + µµ  

  ( )( ) ( ) µµµµ cos24sin4821 2
2

2 −−−=+++ − jsjj j   (1.18) 

 
The totality of the above leads to the subroutine AINOS which also calls another subroutine AICHMO.  
The details above are the work of Piessens and Branders [7]. 
 
2.0 Observation and Modification 
 The kernel of the work in the computation of oscillating integrals’ [7] is the approximation of a 

function by the truncated chebyshev series as shown in the equation (1.12), that is,. ∑
=

≈
12

0

)()(
t

ii tTatφ .  

As it can be noticed in the final computation, the above approximation runs through the whole work.  So 
the impression is created that all oscillating functions can be approximated accurately by the sum

∑
=

12

0

/ )(
i

ii tTa .  This is arbitrary and from various works in [1], [2], [3] the presumption cannot be correct 

and in fact it is not correct.  It is as a result of this we are suggesting that the number of terms should be 
determined by the level of error that may be tolerated in any particular integration. 
Therefore, any arbitrary function )(tφ  may be approximated as 

     ∑
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≈
n

i
ii tTat
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/ )()(φ     (2.1) 

where    
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where t∈  is a defined level of error tolerance.  In this way N* (the number of terms of chebyshev 

polynomial) will depend on each function in question.  So substituting this is in equation (1.13) we have 
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In a similar manner using the same argument in [7] we obtain 
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where     

    ( )∫−=
1

1
)(sin dttTtS jj µ     (2.5) 

and   

    ( )∫−=
1

1
)(cos dttTtc jj µ     (2.6) 

 
These integral (2.5) and (2.6) can be computed using the three term recurrence relations 
 

 ( )( ) ( )( ) jj cjjcjj 224221 222
2
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2
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and  
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2

2 −−−=+++ − jsjj j  (2.8) 

 
where according to Piessens at el [7]  
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and  
    L,2,1,00212 ===+ isc ii    (2.13) 

and the estimate of the integration error is 
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Apart from this modification, all other steps are the same as in the computation of oscillating integrals [7].  
The subroutine AICHMO (which is called by AINOS) is modified by the terminating criterion in (2.11). 
 
3.0 Experimental Computation and Result 
The result of the experiment was compared with the subroutine AINOS (with AICHMO) [5] and the 
subroutine FSPL2 [3, 4, 6] which is a standard robust algorithm.  Table 1 gives comparative results for the 
integral  
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For various values of n and 1εεε == a  

Note if α  is small the integral 
2cos21

2cos

απα
π

++ x

xn
 is a smooth function while if 1≈α  it is peaked 

and so has a singularity on [0, 1].  In the table N denote the number of function evaluation and T represent 
the computation time in – seconds. 
 
Table 1 

 
ε  

 
α  

 
n 

NEW SCHEME AINOS FSPL2 
Absolute 
error 

N T Absolute 
error 

N T Absolute 
error 

N T 

 
 
 
10 – 6  
 

 
0.2 
 

2 
 
8 

81026.0 −×−
81014.0 −×  

39 
91 

23 
36 

81026.0 −×−
81014.0 −×  

39 
91 

23 
36 

81026.0 −×  
81016.0 −×−

 

65 
65 

30 
36 

 
 
0.9 

2 
8 
32 

101013.0 −×  
111015.0 −×−
81042.0 −×−

 

27
3 
29
9 
27
3 

14
3 
14
6 
11
9 

101013.0 −×  
111015.0 −×−
81042.0 −×−

 

27
3 
29
9 
27
3 

14
3 
14
6 
11
9 

81021.0 −×−
81022.0 −×  
71011.0 −×  

513 
513 
1025 

220 
210 
476 

 
 
 

 
0.2 
 

2 
 
8 

141080.0 −×  
141014.0 −×  

14
3 
91 

77 
37 

141080.0 −×  
141014.0 −×  

14
3 
91 

77 
37 

121062.0 −×  
111056.0 −×−

 

257 
257 

130 
130 
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10 – 9 

 
 
 
0.9 

2 
8 
32 

121077.0 −×  
111015.0 −×−
121053.0 −×−

 

50
7 
42
9 
48
1 

27
6 
22
0 
19
2 

121077.0 −×  
111015.0 −×−
121053.0 −×−

 

50
7 
42
9 
48
1 

27
6 
22
0 
19
2 

121018.0 −×−
121033.0 −×  

131038.0 −×−
 

1025 
2049 
4097 

453 
879 
1724 

 
4.0 Conclusion 
 It was found that the experimental results were the same as for AINOS (with AICHMO) and that 
the new routine competes favourably with FSPL2 for smooth integrals. 1≅α .  It is more accurate than 
AINOS and FSPL2.  In fact the routine AINOS is a particular form of the new method or rather the new 
method is a generalization of the routine AINOS. 
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