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Abstract
The Yokota algorithm [Yok 88] is one of the existing algorithms
k
for generating Egyptian fractions. It defines N, as N, = 7 S
i=1

k
where S={p2 |k20andpisprime} and S =ith smallest

k
element of S. In this paper we define N, as N, = 77 S* and
7

redesign the algorithm. We discuss the observed changes in the
length and denominators of the resulting expansion.

pp 331-336

1.0 Introduction:
A sum of positive (usually) distinct unit fractions, that is, expression of the sum of unit

. 011 1 . . o .
fractions Ilke—+E+—+..., where the denominators a, b, c,... are increasing is calldgggptian
a C

fraction.

The theory of Egyptian fractions gained prominence as eadQ@R3BC, when ancient Egyptians
carried out computations and division of Agricultural product, using Egyffitéections (Unit fractions).
Consider a practical example of a farmer, with five sawfkgrain to be shared among eight people
working on his farm. First the farmer gives all eight ofnthiealf a sack each, with one sack left. Next
the remaining sack is divided into eight equal parts, so they get areegtit of a sack each i.e.

/ XXXX XXXX
XXXX XXXX : 8
/ XXXX XXXX

XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX
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+—. The concept of Egyptian fractions can be generalized for all frac\Bqnsq 0

and

0| Ol
N |-
0|

*Corresponding author

Theorem 1

Every fraction P < 1 has Egyptian fraction representation and the representation terminates at some
q

stage.
Pr oof

ConsiderE < 1 and ifp = 1, the problem is solve sinc—g is already unit fraction, so our interest is in

q
fractions whose numerators are greater than 1. Our metkm€ins the biggest unit fraction we can and

take it fromE. With what is left, we repeat the process. We will shioat this series of unit fractions

q
always decreases, never repeats a fraction and eventually tesnihat,

p_ 1,11, +L (1.1)

q m M Mn

where m <np <My <...<n,. Chose the largesy at each stage, this implies th%ct <P but thati
m g m
is the largest such fraction. More generally,}# is the largest unit fraction less the@m then
q
1 ,p (1.2)
m-1 q
: . 1 p
sincep > 1, neither— nor equal—.
n om-1 q
The remainder will then be
n —
p_1_Pm-q (1.3)
a m am
Also since ! > P (1.4)
m-1 ¢
Multiplying both sides by we have g 1 >p (1.5)
7
or multiplying both sides b)(nl —1) and expanding the brackets, then adgirsond subtracting to both
: 1 p 1 P p
sides, we have— >+, — . m-1>+-.n-1,1>=(n -1) = q>P(n; -1), 9> pny - p,
M g N q q

q+p>py-p+p,q+p>pm, q+p-gq=>png—q
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pP>pm-q (1.6)

Observe, pny —q which is the numerator for the remainder is smaller than otfiginal
numeratomp. If the remainder in its lowest term is a unit fraction, ave finished. Otherwise, we can
repeat the process on the remainder which has a smaller denoram&p the remainder when we take
off the largest unit fraction gets smaller still. Sincés a whole (positive) number, this process must
inevitably terminate with a numerator of 1 at some stage.

Theorem 2
m 1 1 1 . ) ) . -
—=—+—+...+— if and only if there exist positive integetd and N and divisors
n X X Xk

Dy, Dy,...Dg of N such that% =" and Dy, Dy,..Dg=0 (mod M). Also, the last condition can be
n

replace byDy, Dy,..Dx= M, and the condition[py, D,,...Dx) = 1 may be added without affecting the
validity of the theorem [2].

2.0 Déefinition/Notation
® A practical number is an integél > 0 such that for all integers On<< N, n can be written as
the sum of distinct divisors &f.

For instance, it is easily seen thapi€an be written as the sum of divisorsqothenﬁ can be

4+5 4 5 _1 1
=—=—==+

20 20 20 5 4°

expanded with no denominator greater that q itself. 'I'-Z%s

Theorem 3
k
If Ny = 7§ andr < 2Ny, thenr can be written as the sum of distant divisors\gf.
i=1

Pr oof

The theorem is easily shown to be true for k = 0, 1, or 2. Forpeahk = 2, we haveNy =6
and 2N = 12. Sonotethat4=1+43,5=2+3,7=6+ 1,8 =6+ 2. Now supmotebrem is true
for 0,1, 2, ..., k= 1. Ifn<2Ny_; we are clearly done. So assu@bl,_; <n<2Ny. Note that
2N =2Ng-1 - S so, find Sy such thatn = S.S; +r with § <1 <25, clearlyr <25, <2Ny_4

for k > 2 andS < 2(Ng—1 =1) < 2Ny _; so we can writeS= Y. d/ andr = > d; whered; and d/

are divisors ofN,_; and thedi/ and thed; are distinct. But then, sinc®, is not divisible byN, _;

we have than = > (S¢d; )+ d
which is the desired representatiomof
(i) For convenience, we will also defing = ith prime number, whergy = 2,
(p, =3 p3=5..), T =pL. P2 ... Pk S:{p2k|k >0andpis prime}, § =ith smallest
element of S.
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3.0 Thelmproved Yokota Algorithm:

Define
K 2
Ny=m § (3.1)
i=1
Given: rationaIB <1 in lowest terms
q
Step 1
We findk such that
Nik-1= g < Ng

Step 2
If |Ngthen P =N£' [q|Nk impliesq is a divisor of Nk] . We can write
q K
b= Z di whereall di|Nk
Step 3
If not, then - =—==—=—+— (3.2)

where

(1—iij <r <2Ny and (1< S< Ny)

JS

The termNi can be done as Withl\tl)—, we can find an expansion forand multiply the denominators
k k
by q.

Next we shall consider the following examples using first, the Yokdgorithm and then our
improved Yokota algorithm. After which we compare the performarfcthe algorithms based on the
length and denominators of the Egyptian fractions produced.

Example

Given the seiS={ 2,3,4,5,7,9111316,..}. Write out the Egyptian fraction for (o%g , (i) i—:

3.1 Using Y okota Algorithm:
k
Ny =m § = N1 =2 Ny =6,N3 =24 N4 =120 N5 =840, and so forth.i—?: Thus k
i=1
16 16(24) 22(17) +10
17 17(24) 17Q24)

=3andNy = 234=24. So,

s

Continuing

22 10 22_12+8+2_1 1 1 10 8+2 _ 1 1
——_ N —=———=—+—+—and = = +—

ow n
“ 21" 17(24)° 24 24 2 3 12 174 174 51 204

2
Note (1——} N3 =0, so this is what we want.
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Therefore E=1+}+ 1 += 1 +— 1 (3.4)
17 2 3 12 51 204

3.2 Using improved Y okota Algorithm:

k
Ny=1 SZ = N; =4, N, =36, N3 =576 and so forth.i—?:Thus k=2and\, =36, so
i=1

16 _16(36) _33(7) +15
17 1736)  17(36)

Note (1—LJN2 <15< 2N, i.e —=5<15<72 as required. Continuing

VS

_33, 15 _33_18+12+3_1 1 1 15 _9+6 _ 1, 1

. Again = and = =—+—
36 17(36) 36 36 2 3 12 1736) 17@86) 68 102
16 1 1 1 1 1

Thus — ==+t —+—++ (3.5)
17 2 3 12 68 10z
3.3 Using Yokota Algorithm:
13 thus, k>3 Ny =24, so 1o =13@4 _ 209 +12
15 15 15(24) 15(24)
2
Note {1__JNk <r <2N.
VS
Continuing
20 12 &)12+6+211id12_8+4_i+1

(0) an = —
“ 21" 15Q4) 24 24 2 4 12 15(24) 15(24) 45 90

31,1, 1 1 1
Thus —=—+
15 2 4 12 45 10z

3.4 Using Improved Yokota Algorithm:
13 thusk >2 N, =36, so o= 1360 _319 +3
15 15 15(36) 15(36)

(3.6)

VS

(31, 3 | 31_18+9+4_1.1.1 3 _ 1 _

ow
36 15(36) 36 36 2 4 6 15(36) 180

St TS — (3.7)
15 2 4 6 18C

Note (1—LJNk <r <2Ng. Continuing,
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4.0 Conclusion
k
From (3.5) and (3.6) both definitions yield the same number of iémhst =7 32 yields
i=1

k
solutions with smaller denominators. While in (3.|'7sbk =77 SZ gave the least number of terms.
i=1

Since the performance, of an Egyptian fraction algorithmaged on the length and denominators of the
unit fractions produced. The compassion above shows that the definition

k k
N =1 812 perform better thaiNy, = 77 § .
i=1 i=1
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