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Abstract

A class of fourth order exponential-fitted multidiemative method for the
numerical integration of stiff initial value problens is designed. The method is
derived with certain free parameters ‘a’ and ‘b’,hich allow it to be fitted
automatically to exponential functions. The formuldas been implemented
and preliminary numerical results indicate that thepproach compares
favourably with other existing methods that havelwed the same set of stiff
problems. Finally the graphical comparison of theumerical results is
displayed after each problem.
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1.0 Introduction
We shall consider Initial Value Problems in ordinary differdmtipuation of the type,

y =f(x,y), y(Xg) =yo ;asx<b, yOR (1.1)
It is assumed that problem (1.1) has a unique solutiore\Rx)
The derivation of our scheme is based on the idea of exponentially fitteadorm
Definition 1
A numerical integration method is said to be exponentially fitted atrglex value\ = Ao, if when the
method is applied to the scalar test probjem Ay, y(0) =y, with exact initial conditions, the
characteristic equatiap(Ah) satisfies the relation;

@(Agh) =gl (1.2)

The idea of using exponentially fitted scheme for the approximatermain@tegration of certain classes
of first order initial value problems in ordinary differaitequations of the form (1.1) above has received
considerable attention in recent years.

The basic reason behind exponentially fitting, which was originaioposed by Liniger and
Willoughby (1970) [10], is to derive integration schemes containing fresrders.

These parameters are chosen so that a given exponentiabfiugictvhere g is real, satisfies the
integration formula exactly. As a result of this idea, C4€81) [4], attempted using second derivative
formulas with step numbde = 1, and 2, respectively, to derive exponentially fitted scheagsying
scalar test problem;

y=A4y, y0 =1 A0C, Re(1)<0. (1.3)
and setq = Ah

Okunuga (1994, 1997) [[11, 12], derived exponentially fitted schemes wsingds derivatives
formula. His work showed that the methods are stable. Hereirgshak derive exponentially fitted
scheme using third derivative formula, with adequate stability chasdicie to
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cope with stiff systems. Our proposed scheme employs the procedure of prechictector forms.

2.0 Development of the Integration Formula
The general multiderivative multistep method is given by,

K

1
2 4 Yp41 = ZhJ Z Vii ,gJH) , =012 (2.1)
i=0 j=1 i=0
where f r(lj)+| is the | derivative of f(x, y) evaluated at{x y+) ,01 andy;; are real constants witk, #

0 and Vs is the approximate numerical solution evaluated at the pgintlx order to remove the
arbitrary constant in (2.1) we shall always assumecthat1.

Bearing in mind that our objective in this paper is to considehi@ tderivative
exponential-fitted formula, then equation (2. 1) is reduced to

k
20 Yp4j =h Z:V]J n+i +h? Z V2| n+i +h3 Z V3 fr12+| (2.2)
i=0 i=0 i=0 i=0

LetB =vi, ¢i =Ya, i =ys, So that (2.2) now becomes
k k 2 k 3 k
20iYn+i =N X Gfpsi 07 ZG0n4i + D7 Zqvpy (2.3)
i=0 i=0 i=0 i=0

where fn’fi =f [(Xn+i, y(Xn+l)] = y' n+l and On+1 = f’ [(Xn+i,y(xn+i)] = Y" n+l

Vnti = f"[xn+i ,y(xn+i)] = Yn+i are respectively the first, second and third derivatives.pf y

The implementation of our proposed scheme involved a pair of formulae. Thugre{Ra)
serves as the predictor and while equation (2.4) below serves asrdwaro

Kk k+1
4 Yei = 2 Bfpai + 244 On+i *+ N° Z:“’IVn+| (2.4)
i=0 i=0 i=0 i=0

When deriving exponentially fitted method, the approach is to allow both (2.3) antb(@agses
free parameters other than the mesh gizeWe choose free parameters in (2.3) and (2.4), so that both
formulas are fit for exponentially fitting condition.

2.1 Derivation of a Fourth Order Exponential-fitted M ethod

The procedure employed here is that we first derive a thirda prddictor scheme and then move
further to derive a fourth order corrector scheme. The thidérgpredictor formulae is obtained from
(2.3) as,

00 Y+ 01 Ynis + 02 Ynez = 0 Bofn + Bifes + Bofned] +h @Gt @uGne st
@Onid] + D [ @ Vo + G Vet + G Vi) (2.5)
The corresponding corrector formula from (2.4) is given as,
Og Yn + 01 Yne1 + 02 Yniz = N[Bofn + Bafner + Bofnez + Bafneg] + hz[%gn
+ Q0 t+ (p29n+2] + hs[ woVnt GV + G 2Vn+2] (2-6)

Now to derive a fourth order predictor of our scheme, wehsetoefficients of y, f, g and v at
Xn+1 tO zero, Also, we leB, = a as - free parameter amgd=0, =+ 1.

We then obtain the set of equations below by expanding equation (2'Rybyr series and
equating their coefficients.

O+ 1= 0

2— a'Bo =0

2-2a-m-@ =0 (2.7)
4/3 -2a - @ (0o + @) =0
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: 4
When we solve equation (2.7) above, we hayer= - 1,0=2 —a@®= 5 -a+wy o= Wy, B=

2
—-a-w;

3
When the values of the parameters are substituted into equation (2.5)aime obt

2 4
Y 2= Yo = h [akuo+ (2-0)F] +1° [(5 - a-y) Gt (5 -a+ 07)0n)

+ﬁ((,02 Vpi2 T Mo Vn) (28)

Buty' =f(x), y = g(xy) andy = v (xy)
Then equation (2.7) now becomes the third derivative predictor formula, given as

Yn+2 = Yn = h[(aYn+2 2 ayn ]+ hz[[_ T wzjy;’HZ * (E sar wzjyd

3 " n
+h [sz'n+2 t n]
For the purpose of exponential fitting condition, we apply (2.9) to stedarfunction (1.3) to obtain the
stability function of our fourth order predictor scheme.

Yasz _ 1+ 2-2)g+ (45 -a)a” + wpA

(2.9)

,=R(q) (2.10)
Yn 1—aq—(%—a)q2—a}zB
where A=4+ ¢, B=d-dand q=Ah
By the solution of (1.3) we have
+h +h
Y(X J eA(X j Axn
Y+l _ (”) _ N J)_& wh_gh_g (2.11)
Yn y(%n e/];\( e/lxn
asAh=q.

For the purpose of computations and stability analysis of our metledubstitute (2.10) into
(2.9), to obtain the free parameter ‘a’ as;

1+2q+3q +2 (2q2e2q 3e2q)+a}2(A Bezq)
- 2
ae”(q-1)+ala+1)
Again to derive the corresponding corrector formula, we imposesame condition as in the predictor.

That is by settingy; =@ = B = ®; = 0 in equation (2.6) to obtain the following set of simultaneous
equations;

(2.12)

2-3D-26,-® =@ (2.13)

—2b-3 B3 —2¢ = 2wy
We also lefz = b as free parameter ang= +1. Solving equation (2.13), we obtain the values of
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the unknown parameters as;
a‘-lB—l-b(po—E-Eb+co B—l(pz—-(}+gb+c0)d 0 =o
0 ) 0 ) 3 4 21 2 ) 3 4 21 b 2

When the values of the parameters are substituted into equation (2.6yenbééourth order corrector
formula as.

, 9
Yn+2 = Yn = h{bymg + Yneo +(1-b)yp]+ hZH% +o b+ wz]ymz

(2.14)
n 3 mn mn
+(§—%b+wz)yn]+h [wayrsz + oy
We applyour corrector formula in equation (2.13) to test function (1.3) to obtain;
1+(1-b)g+b M+(%—§b 2+ oA
Yn+2 _ (1-bla Ay T84 )q “2 (2.15)
Yn 1-q+ L+ 9bjo? - B
We need to determine the radd*3 in (2.13)
Yn
3
v 3 2 3
Vi3 - Yne2 Yoo  (c2a = [—ymz} = [R@J 216)
Yn Yn Yn Yn
By equation (2.14), equation (2.13) now becomes
3
1+ (1-b)g+ba[R@G)]2 + £ - 3blg® + w,A
sz 1+ -Dla+ el =20k e = R(q) (2.17)

- 1,9n2_
Yn 1 q + (é + th C(}ZB
Equation (2.15) now unites both our predictor and corrector schemes) ishiapable of solving stiff

systems for which exponential fitting is applicable.
Solving for b in (2.15) we have,

2 2
1+q +% - e2q(1+q3 - q] + wz(A— Be2q)

" jqz(?ﬁzq +1)-qle* 1)

(2.18)

3.0 Stability analysis

Stability is the property of a numerical method to keep thers bounded as the calculation
advances.
Definition 2

A method is said to be A-stable if the stability region associated with that formula contains the
open left half plane.
Definition 3

A method is said to be zero-stable if no root of the first characteristic polynomial has modulus
greater than one, and if every root with modulus oneis simple.

Now to investigate the stability criteria of our methode thetermination of the values of
parametera andb in the open left — half planex(; 0] are of interest.

Therefore, it is straight forward to find the criteria whichndb need to satisfy such that
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In+2| o 1 .for all g with Re ¢) = 0.

Yn
Necessary and sufficient conditions for this inequality tal laok given by the application of the
maximum, modulus theorem.
Theorem(3.1) [maximum modulus theor em]
Let f be analytic and not constant in a domain M. Then | f | cannot have a local maximumin M.
The implications of this theorem are;
0] IRe @))]<1 onRe(g)=0 (3.1)
(ii) R(q) is analytic in Ref) <0
If condition (i) holds, it follows that R (q) is analytic @ — —oo and thus (i) and (ii) will guarantee A-
stability by the maximum modulus theorem (3.1).

Yn+2
Yn

Now consider <1 (3.2)

-1< 0. From (2.16) if we assum®; - O throughout, condition (i) gives

in which case{M
Yn

%+%b<0:b<—%. Wheneverm,= 0, we obtain from condition (i) that a < 2/3.

Furthermore, we can show analytically thaandb have finite limits. From equation (2.12) we

havelima=1, lima = ﬂ Similarly, from equation (2.16imb =0, andlimb = ﬂ However, by
q-0 g - 3 q-0 g- -

numerically plotting the values afandb for a large samplBl of q € (-0, 0], we observe that for various

values ofq the corresponding values afandb are within the range abovEhat isa € (1, 4/3) ancb €

(O, 4/9). We further use a numerical procedure to examinbethaviour of our parameters by plotting

the valuesa(q) andb(qg) for a large sampl@&l values of q in the range ¢, 0]. It was found that as the

values ofg decreases, the corresponding values arfidb are monotonically increasing as shown in table

(3.1).

Table 3.1Parameter values a and b associated with fourth order scheme.

q a b
-1.0 1.0596 0.01683
-2.0 1.1178 0.2171
-10.0 1.2689 0.3744
-100.0 1,3254 0.4371
-200.0 1.3278 0.4407
-1000.0 1.3313 0.4437

This set of values in Table 3.1 above, suggest that our itisegfarmula will be A—stable within the
range of values specified by the choices of parameters a and b.

However, since R(q) gives the stability region asa > 0, and b < 4/9]Ih&ri], for all q,
1+ 2-2)g+ (% -a)g* + A

thus zero stability is satisfied, wheré = 5
1-agq-(%4-a)q” - wB

Furthermore, the

combined predictor-corrector stability polynomial of our scheme gives

Journal of the Nigerian Association of Mathematic&hysics, Volume 9 (November 2005)
A fourth order exponentially-fitted multiderivative  F. O. Otunta and C. E. Abhulimen J of NAMP



3
2 1+(1-b)q +bq[|3(q)]2 \Jr(%—ib)qz + A

1—q+%+%b)q2+w28
Testing for values of gi(- «,0], we established from Table (3.1) thal |< 1 for all g. That is
the predictor- corrector formula (2.15) fitted to stiff scalar prokl&r) is absolutely stable for all
choices of free parameters.
This formula derived so far in section 2 is coded in Fortran 77 lgegt@asolve several stiff
systems of ordinary differential equations.
Such problems are discussed in the next section.

4.0 Application and numerical results

The aim of the numerical results presented in this sectifinsisto show the accuracy of our
scheme when compared with the exact solutions. Secondly, how oumescwenpare with various
existing other methods. All numerical experiments are coded inaRor7 and implemented on digital
computer, VIA Samuel 2 Processor.

The following problems are considered.
Problem1

Jackson and Kenue (1974) [8], Cash (1981) [4], Okunuga (1997) [12].

=-y+95z 0)=1

Y' y Y( ) [ [01]
Z=-y-97z, Z0)=1

The eigenvalues of the Jacobian matrix of the systerﬁ are2, and', = - 96 and the general solution is

of the form

(4.2)

y(x) = Ae’X + Be'2X

(4.2)
Z(x) = Ce™X + De'2X
Hence the true solution is given as
y = |o5e72% — 48679% /a7
(4.3)

z= 48796 - e‘zx) 47
Problem2 (Test problem)
From Enright and Pryce (1983) [5], Gear (1967) [7] and Okunuga (1997) [12].

Y1 =0[013y; +1000y5; y(0)=1
Y2 =-2500y,Y3; y2(0)=1  (4.4)
y3 =013y ~1020y1y3 - 2500y,y5;  y(0)=1
The eigenvalues of the system (Problem 2) are gibvgnA =0, A, = -0[00928572and
A3 = 35000002714 The exact solution is given by

A
y1=C; +DjeX, j =123 (4.5)
Cj and Dj are determined using the initial value condition. Problem 3,areslem from Enright and
Pryce (1983) [5], y' =My
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10* 100 -10 1

| 0 -1000 10 -10
M = y

0 0 -1 10

0 0 0 ol

yO)=[, 1, 1, 1", osx<11
The eigenvalues of the Jacobian matrix is givedps —0.1, A, =-1, A3 =1000, A4 =-10000
The exact solution is of the form

where (4.6)

yj(x) = WjeMX +vjeA2X; j=1---4 (4.7)
where
-9909-A, ., _ 9909+ A
= h=d ' Ak
_-1000-4, ., _ 9909+
kA 2T A
V6 = ;lgjjl V3 = /19_—/)111
L~ A2 )
_ -0.1-/12 . _ 0.1+/]1
Tk T

Problem 3 was considered by Enright and Pryce (1983) [5] and the error toleganiiead at 16

We shall compare the result obtains by our order 4 scheméhaitiof Cash (1981) [4], Jackson
and Keunue (1974) [[8] and Okunuga (1997) [12]. We denotes the methods drbgaackson and
Kunue as J-K, cash orders 4 and 5 formula as CH4 and CH5 Okunuga 4®1@&rs 4 while EXPN4
represent our order 4 scheme. Table 4.1 clearly confirms the étivepeature of our methods with the
existing ones, as shown below.

Table 4.1:Comparative analysis of result of Problem 1

Steph | Method Y(1) Z(1) x10° Error ) Error ()
0.0625 | J-K 0.2735503 -0.287477 3x10’ 4x10°
CH4 0.2735498 -0.2879471 3x10’ 3x10°
CH5 0.27355005 | -0.287942 3x10%8 1x10°
OK4 0.273550041 | -0.287947411 | 3x10%® 3x10%8
EXPN4 0.273550041 | -0.28794741 3x10Y 3x10%8
0.125 | OK4 0.27355005 | -0.287947402 | 1x10%® 3x10%
EXPN4 0.27355004 | -0.287947401 | 0.0000000 0.0000000
0.05 EXPN 4 0.27355003 | -0.287947403 | 3x10%® 3x10%8
0.25 EXPN 4 0.27355004 | -0.28794741 0.0000000 0.000000
True Solution 0.27355004 -0.28794741 - -

We observe that with = 0.25 Our order 4 integration formula needs only two iterations to eval(Bte
andz(1) respectively, yet is very accurate when compared with other methods

The graphical representation of the Absolute Errors of the numerscdisres displayed below.
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Figure 1: Error of Numerical Values of y(x) for Problem hanh = 0.0625
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Figure 2: Error of Numerical values gfx) for Problem 1 wheh = 0.125

1.00E-16
9.00E-17]
8.00E-17]
7.00E-171
Error 6.00E-17
5.00E-17
4.00E-17
3.00E-177
2.00E-17]
1.00E-17]

0.00E+00 OK4 EXPN4
g Error (y) 1.00E-16 0.00E+00

[ Error (2) 3.00E-17 0.00E+00

M ethod
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Figure 3: Absolute Error of Numerical values yfx) for h = 0.5 and 0.25
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Table 4.2: Performance of our order on Problem 2
Steph | Method v,® Y, Y ER (y,) ER (v, | ER(y5)
0.0625 | OK4 0.5908282 | 1.00924009 | -2.79412225 | 4.4x10%° 4.4x10'° 8.9x10%
EXPN 4 | 0.5907599 | 1.00924036 | -2.79146048 | 0.0000 0.0000 0.0000
0.1 OKA4 | 0.59076 1.00924005 | -2.77412225 | 6.6x10% 6.6x10% 1.8x10%
EXPN4 | 0.5907599 | 1.00924036 | -2.79146048 | 6.7x10% 8.9x10'° 2.7x10"°
True Solution | 0.5907599 | 1.00924036 | -2.79146048 | - - -

From Table 4.2 we observe that both OK4 and EXPN4 are identical gr y; for a step length of
h=0.0625. They are very accurate when compared to the exact solution.

against 10 suggested by Enright and Pryce (1983) [5].

A fourth order exponentially-fitted multiderivative

We also observed from our numerical results that the error tolerance czinda to 1% as

We represent the absolute errors of the numerical results of Probfetine2graph below.

Journal of the Nigerian Association of Mathematic&hysics, Volume 9 (November 2005)

F. O. Otunta and C. E. Abhulimen

J of NAMP



Figure 4. Error of Numerical values gfx) for problem 2 wheih = 0.0625
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Method
Table 4.3: Accuracy table for Problem 3
Step Method stefh Error (y1(1) | Errory(1) Error (1) Error y(1),
OK4 3.6x10-12 | 3.4x10% 3.1x10%° 1x1071®
0.1 EXPN4 2.6x10" 3.4x10"% 2.7x10% 2.8x10"
0.0625 | EXPN4 3.6x10" 3.4x10"% 4.4x10"% 4.1x0"

Y=59 10.942866
Y, = 595.6555
Y3=6.334079
Y, =0.90483242
From the table the efficient of our order 4 scheme is denaiadirwith the result of h = 0.0625 which is
slightly more accurate thdan= 0.1. It is also clear from the graphical representatiathefbsolute errors
of the numerical result.

The true solution:

5.0 Conclusion

The numerical results of Problems 1, 2 and 3 in this paper showanthaf the scheme derived
for order 4 could be used for solution of stiff initial value problems.
5.1 Remark

Our fourth order exponential fitted scheme is relatively stétd O < w, < 0. Our numerical

result indicate that fore, = Oour scheme is far more accurate when compared with the ekaoors

of our kind of problems considered in this paper. It is thus belieatdhé method derived in this paper
represent useful addition to the library of algorithms or methodsdiving stiff problems of which
exponential fitted is applicable.
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Figure5: Error of Numerical values gf(x) for Problem 3 wheh = 0.1
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