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 Abstract 
 

A class of fourth order exponential–fitted multiderivative method for the 
numerical integration of stiff initial value problems is designed. The method is 
derived with certain free parameters ‘a’ and ‘b’, which allow it to be fitted 
automatically to exponential functions. The formula has been implemented 
and preliminary numerical results indicate that the approach compares 
favourably with other existing methods that have solved the same set of stiff 
problems. Finally the graphical comparison of the numerical results is 
displayed after each problem. 
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1.0 Introduction 

 We shall consider Initial Value Problems in ordinary differential equation of the type, 

    Ry    b, x  a ; y  )y(x y),f(x, 00 ∈≤≤==′y    (1.1) 

It is assumed that problem (1.1) has a unique solution y(x) є R.  
The derivation of our scheme is based on the idea of exponentially fitted formula.  
Definition 1 
A numerical integration method is said to be exponentially fitted at a complex value λ = λ0, if when the 
method is applied to the scalar test problem y’ = λy, y(0) = y0 with exact initial conditions, the 
characteristic equation φ(λh) satisfies the relation; 

   heh 0
0 )( λλφ =       (1.2) 

The idea of using exponentially fitted scheme for the approximate numerical integration of certain classes 
of first order initial value problems in ordinary differential equations of the form (1.1) above has received 
considerable attention in recent years. 

The basic reason behind exponentially fitting, which was originally proposed by Liniger and 
Willoughby (1970) [10], is to derive integration schemes containing free parameters.  

These parameters are chosen so that a given exponential function eq, where q is real, satisfies the 
integration formula exactly. As a result of this idea, Cash (1981) [4], attempted using second derivative 
formulas with step number k = 1, and 2, respectively, to derive exponentially fitted schemes, applying 
scalar test problem;  

  0.  )( Re  ,  ,1)0(   , <∈==′ λλλ Cyyy     (1.3) 

and set hq λ=  
 Okunuga (1994, 1997) [[11, 12], derived exponentially fitted schemes using second derivatives 
formula. His work showed that the methods are stable. Herein, we shall derive exponentially fitted 
scheme using third derivative formula, with adequate stability characteristics to  
____________________ 
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cope with stiff systems. Our proposed scheme employs the procedure of predictor –corrector forms. 
 
2.0 Development of the Integration Formula 

The general multiderivative multistep method is given by, 
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where  
(j)

in
f + is the jth derivative of f(x, y) evaluated at (xn+i, yn+i) ,αI and γj,i are real constants with αk ≠ 

0 and yn+i is the approximate numerical solution evaluated at the point xn+i. In order to remove the 
arbitrary constant in (2.1) we shall always assume that αk = 1. 

Bearing in mind that our objective in this paper is to consider a third derivative 
exponential-fitted formula, then equation (2.1) is reduced to   
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Let βi  = γ1,i,    
φ

i   =γ2,I   
ω

i
  =γ3,I  so that (2.2) now becomes  
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where    fn+i = f [(xn+i, y(xn+i)] = y′ n+I   and   gn+I = f ′ [(xn+i, y (xn+i)] = y ′′ n+I  

( )[ ] ininin yxfv ++++ ′′′=′′= inxy ,  are respectively the first, second and third derivatives of yn+i. 

The implementation of our proposed scheme involved a pair of formulae. Thus equation (2.3) 
serves as the predictor and while equation (2.4) below serves as the corrector. 
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 When deriving exponentially fitted method, the approach is to allow both (2.3) and (2.4) to posses 
free parameters other than the mesh size ‘h’. We choose free parameters in (2.3) and (2.4), so that both 
formulas are fit for exponentially fitting condition. 
2.1 Derivation of a Fourth Order Exponential-fitted Method 

The procedure employed here is that we first derive a third order predictor scheme and then move 
further to derive a fourth order corrector scheme. The third order predictor formulae is obtained from 
(2.3) as, 
  α0 yn + α1 yn+1 + α2 yn+2  =  h [β0fn + β1fn+1 + β2fn+2] +h2[φ0gn+φ1gn+1+   
        φ2gn+2] + h3 [ω 0vn + ω 1vn+1 +ω 2vn+2]   (2.5) 

The corresponding corrector formula from (2.4) is given as, 
  α0 yn + α1 yn+1 + α2 yn+2 = h[β0fn + β1fn+1 + β2fn+2 + β3fn+3] + h2[φ0gn 

     + φ1gn+1 + φ2gn+2] + h3[ω 0vn + ω 1vn+1 + ω 2vn+2]  (2.6) 
Now to derive a fourth order predictor of our scheme, we set the coefficients of y, f, g and v at 

xn+1 to zero, Also, we let β2 = a as - free parameter and αk = α2  = + 1. 
We then obtain the set of equations below by expanding equation (2.5) by Taylor series and 

equating their coefficients. 
   α0 + 1 = 0 
   2  – a- β0  = 0 
   2 - 2a – φ0 - φ2  = 0     (2.7) 
   4/3 –2a - 2φ2 -(ω0 + ω2) = 0 
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When we solve equation (2.7) above, we have; α0   = - 1, β0 = 2 – a, φ0 = 
3

4
- a + ω2, ω0 = ω2,,  φ2 = 

3

2
- a -ω2 

When the values of the parameters are substituted into equation (2.5), we obtain. 

Yn+2 – yn = h [afn+2 + (2-a)fn]  +h2 [(
3

2
- a - ω2) gn+2 + (

3

4
-a+ ω2)gn) 

           +h3(ω2 vn+2 + ω2 vn)            (2.8) 
But y1 = f(x,y), y = g(x,y) and y = v (x,y) 
Then equation (2.7) now becomes the third derivative predictor formula, given as 
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For the purpose of exponential fitting condition, we apply (2.9) to scalar test function (1.3) to obtain the 
stability function of our fourth order predictor scheme. 
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where  A = q3 + q2, B = q3 – q2 and q = λh 
By the solution of (1.3) we have 
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as qh =λ . 
 For the purpose of computations and stability analysis of our method, we substitute (2.10) into 
(2.9), to obtain the free parameter ‘a’ as;  
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Again to derive the corresponding corrector formula, we impose the same condition as in the predictor. 
That is by setting α1 =φ1 = β1 = ω1 = 0 in equation (2.6) to obtain the following set of simultaneous 
equations;   
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We also let β3 = b as free parameter and α2 = +1.  Solving equation (2.13), we obtain the values of  
 

"' " ' 
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the unknown parameters as; 

α0 = - 1, β0  = 1 - b, φ0 = 
3

1
 - b

4

3
 + ω2, β2 = 1, φ2 =- (

3

1
+ b

4

9
+ ω2,) d,  0  = ω2 

When the values of the parameters are substituted into equation (2.6), we have the fourth order corrector 
formula as. 
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We apply our corrector formula in equation (2.13) to test function (1.3) to obtain;  
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We need to determine the ratio 
ny

3ny +  in (2.13) 
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By equation (2.14), equation (2.13) now becomes  
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Equation (2.15) now unites both our predictor and corrector schemes, which is capable of solving stiff 
systems for which exponential fitting is applicable.  
Solving for b in (2.15) we have,  
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3.0 Stability analysis 
 Stability is the property of a numerical method to keep the errors bounded as the calculation 
advances. 
Definition 2 
 A method is said to be A-stable if the stability region associated with that formula contains the 
open left half plane. 
Definition 3 
 A method is said to be zero-stable if no root of the first characteristic polynomial has modulus 
greater than one, and if every root with modulus one is simple. 
 Now to investigate the stability criteria of our method, the determination of the values of 
parameters a and b in the open left – half plane (-∞, 0] are of interest. 
 Therefore, it is straight forward to find the criteria which a and b need to satisfy such that 
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 .for all q with Re (q) = 0. 

 Necessary and sufficient conditions for this inequality to hold are given by the application of the 
maximum, modulus theorem.  
Theorem (3.1) [maximum modulus theorem] 
 Let f be analytic and not constant in a domain M. Then | f | cannot have a local maximum in M.  
The implications of this theorem are; 
  (i) |Re (q)| ≤ 1    on Re (q) = 0     (3.1) 
  (ii) R(q) is analytic in Re(q) < 0 
If condition (i) holds, it follows that R (q) is analytic as −∞→q and thus (i) and (ii) will guarantee A-
stability by the maximum modulus theorem (3.1). 
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1 −⇒+ pp bb .  Whenever ω2= 0, we obtain from condition (ii) that a < 2/3.  

Furthermore, we can show analytically that a and b have finite limits.  From equation (2.12) we 

have 
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numerically plotting the values of a and b for a large sample N of q Є (-∞, 0], we observe that for various 
values of q the corresponding values of a and b are within the range above. That is a Є (1, 4/3) and b Є 
(0, 4/9).  We further use a numerical procedure to examine the behaviour of our parameters by plotting 
the values a(q) and b(q) for a large sample N values of q in the range (- ∞, 0]. It was found that as the 
values of q decreases, the corresponding values of a and b are monotonically increasing as shown in table 
(3.1). 
 

Table 3.1: Parameter values a and b associated with fourth order scheme. 
 

q  a b 
-1.0 1.0596 0.01683 
-2.0 1.1178 0.2171 
-10.0 1.2689 0.3744 
-100.0 1,3254 0.4371 
-200.0 1.3278 0.4407 
-1000.0 1.3313 0.4437 

  
This set of values in Table 3.1 above, suggest that our integration formula will be A–stable within the 
range of values specified by the choices of parameters a and b.  

 However, since R(q) gives the stability region as a > 0, and b < 4/9, then, 1pτ  for all q,  

thus zero stability is satisfied, where  .
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combined predictor-corrector stability polynomial of our scheme gives  
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 Testing for values of q ∈(- ∞,0],  we established from Table (3.1) that | τ |  < 1  for all q. That is 
the predictor- corrector formula (2.15) fitted to stiff scalar problem (1.2) is absolutely stable for all 
choices of free parameters.  

This formula derived so far in section 2 is coded in Fortran 77 language to solve several stiff 
systems of ordinary differential equations. 
Such problems are discussed in the next section. 
 
4.0 Application and numerical results 
 The aim of the numerical results presented in this section is first to show the accuracy of our 
scheme when compared with the exact solutions. Secondly, how our scheme compare with various 
existing other methods. All numerical experiments are coded in Fortran 77 and implemented on digital 
computer, VIA Samuel 2 Processor.  
 The following problems are considered. 
Problem 1 
 Jackson and Kenue (1974) [8], Cash (1981) [4], Okunuga (1997) [12]. 
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The eigenvalues of the Jacobian matrix of the system are λ
1 = -2, and λ2 = - 96 and the general solution is 

of the form  
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Hence the true solution is given as  
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Problem 2 (Test problem) 
 From Enright and Pryce (1983) [5], Gear (1967) [7] and Okunuga (1997) [12]. 
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The eigenvalues of the system (Problem 2) are given by 009285720,0 21 ⋅−== λλ and 

00271435003 ⋅=λ .  The exact solution is given by 

   3,2,1,1 =+= jeDCy x
jj

λ
     (4.5) 

jC  and jD are determined using the initial value condition.  Problem 3, Test problem from Enright and 

Pryce (1983) [5],     Myy =′  
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The eigenvalues of the Jacobian matrix is given as -10000  1000,  -1,  ,1.0 4321 ===−= λλλλ . 

The exact solution is of the form  
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Problem 3 was considered by Enright and Pryce (1983) [5] and the error tolerance was fixed at 10-5. 
 We shall compare the result obtains by our order 4 scheme with that of Cash (1981) [4], Jackson 
and Keunue (1974) [[8] and Okunuga (1997) [12].  We denotes the methods proposed by Jackson and 
Kunue as J-K, cash orders 4 and 5 formula as CH4 and CH5 Okunuga as OK 4 orders 4 while EXPN4 
represent our order 4 scheme.  Table 4.1 clearly confirms the competitive nature of our methods with the 
existing ones, as shown below. 

Table 4.1: Comparative analysis of result of Problem 1 

 
Step h  
0.0625 
 
 
 
 
0.125 
 
0.05 
0.25 

Method  
J-K 
CH4 
CH5 
OK4 
EXPN4 
OK4 
EXPN4 
EXPN 4 
EXPN 4 

Y(1) 
0.2735503 
0.2735498 
0.27355005 
0.273550041 
0.273550041 
0.27355005 
0.27355004 
0.27355003 
0.27355004 

Z(1) x10-2 

-0.287477 
-0.2879471 
-0.287942 
-0.287947411 
-0.28794741 
-0.287947402 
-0.287947401 
-0.287947403 
-0.28794741 

Error (y) 
3x10-7 

3x10-7 

3x10-18 

3x10-16 

3x10-17 

1x10-16 

0.0000000 
3x10-16 

0.0000000 

Error (z) 
4x10-9 
3x10-9 

1x10-9 

3x10-18 

3x10-18 

3x10-17 

0.0000000 
3x10-18 

0.000000 
True Solution 0.27355004 -0.28794741 - - 

 
We observe that with h = 0.25 0ur order 4 integration formula needs only two iterations to evaluate y (1) 
and z(1) respectively, yet is very accurate when compared with other methods.  

The graphical representation of the Absolute Errors of the numerical results is displayed below.  
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Figure 1: Error of Numerical Values of y(x) for Problem 1 when h = 0.0625
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Table 4.2: Performance of our order on Problem 2 
 

Step h  
0.0625 
 

Method 
OK4 
EXPN 4 

    Y1
(1) 

0.5908282 
0.5907599 

Y2
(1) 

1.00924009 
1.00924036 

Y3
(1) 

-2.79412225 
-2.79146048 

ER (y1) 
4.4x10-16 
0.0000 

ER (y2) 
4.4x10-16 
0.0000 

ER (y3) 
8.9x10-16 
0.0000 

0.1 
 
 
True 

OKA4 
EXPN4 
 
Solution 

0.59076 
0.5907599 
 
0.5907599 

1.00924005 
1.00924036 
 
1.00924036   

-2.77412225 
-2.79146048 
 
-2.79146048 

6.6x10-16 
6.7x10-16 
 
- 

6.6x10-16 
8.9x10-16 
 
- 

1.8x10-15 
2.7x10-15 
 
- 

 

From Table 4.2 we observe that both OK4 and EXPN4 are identical for y1, y2, y3 for a step length of 
h=0.0625. They are very accurate when compared to the exact solution.  

  We also observed from our numerical results that the error tolerance can be raised to 10-16 as 
against 10-5   suggested by Enright and Pryce (1983) [5]. 

We represent the absolute errors of the numerical results of Problem 2 in the graph below. 
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Figure 3: Absolute Error of Numerical values of y(x) for h = 0.5 and 0.25
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Table 4.3: Accuracy table for Problem 3 
 

Step 
 
0.1 
 
0.0625 

Method step h 
OK4 
EXPN4 
 
EXPN4 

Error (y1(1) 
3.6x10-12 
2.6x10-12 

 

3.6x10-12 

Error 2(1) 
3.4x10-13 

3.4x10-13 

 

3.4x10-13 

Error 3(1) 
3.1x10-15 

2.7x10-15 

 

4.4x10-15 

Error y(1)4 

1x10 -16 

2.8x10-17 

 

4.1x0-17 

 
The true solution:  Y1 = 59 10.942866 
   Y2 = 595.6555 
   Y3 = 6.334079 
   Y4 = 0.90483242 
From the table the efficient of our order 4 scheme is demonstrated, with the result of h = 0.0625 which is 
slightly more accurate than h = 0.l. It is also clear from the graphical representation of the absolute errors 
of the numerical result. 
 
5.0 Conclusion 
 The numerical results of Problems 1, 2 and 3 in this paper shows that any of the scheme derived 
for order 4 could be used for solution of stiff initial value problems. 
5.1 Remark 
  Our fourth order exponential fitted scheme is relatively stable for 00 2 ≤< ω . Our numerical 

result indicate that for  02 =ω our scheme is far more accurate when  compared with the exact solution 

of our kind of problems considered  in this paper. It is thus believed that the method derived in this paper 
represent useful addition to the library of algorithms or methods for solving stiff problems of which 
exponential fitted is applicable. 
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Figure 4: Error of Numerical values of y(x) for problem 2 when h = 0.0625
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