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 Abstract 

We study the effect of oblateness and radiation pressure forces of the 
primaries on the locations and the stability of the collinear equilibrium points.  
We find that the locations of these points are affected by the radiation 
pressure forces and oblateness of the primaries but their stability is not 
influenced by them, and they remain unstable. 
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1.0 Introduction 
 The classical restricted three-body problem is unable to discuss the motion of the third 
infinitesimal body when at least one of the participating bodies is a source of radiation or an oblate 
spheroid.  In recent times, many perturbing forces have been included in the study of the restricted three-
body problem. 
 Radzievskii [1] formulated the photogravitational restricted three-body problem and discussed it 
for three specific bodies: the sun, a planet and a dust particle.  Chernikov [2] extended his work by 
including aberational deceleration (the Poynting Robertson effect).  He demonstrated the instability of the 
solutions.  Sharma [3] studied the linear stability of triangular libration point of the restricted problem 
when the more massive primary is a source of radiation and an oblate spheroid as well.  Simmons et. al. 
[4] gave a classical treatment of the more general problem with radiation emanating from both primaries.  
Dankowicz [5] described the motion of grains in orbit around asteroids under the influence of radiation 
pressure originating in the flux of solar photons.  His recent paper [6] accounts for gravitational 
interactions with the asteroid and the sun and the radiation pressure from the sun.  Knitsyn [7,8] 
investigated the stability of triangular and collinear libration points in the photogravitational three-body 
problem.  Vidyakin [9] studied the effect of oblateness of both primaries on the existence of five 
stationary solutions.  Subbarao and Sharma [10] investigated the restricted problem with one of the 
primaries as an oblate spheroid and proved that there was an increase in the coriolis force and the 
centrifugal force due to oblateness.  Singh and Ishwar [11] examined the stability of triangular points 
when both primaries are sources of radiation and oblate spheroids as well. 
 In this paper, we wish to study the “stability of collinear equilibrium points in the generalised 
photogravitational restricted three-body problem”.  The problem is generalised in the sense that both 
primaries are taken as oblate spheroids.  It is photogravitational as they are sources of radiation.   The 
participating bodies in the classical restricted three-body problem are strictly spherical in shape. But in 
actual situations we find that several heavenly bodies like Saturn and Jupiter are sufficiently oblate. The 
minor planets and the meteoroids are of irregular shape. On account of the small dimensions of these 
bodies in comparison with their distances from the primaries, they are considered as point masses. But in 
many cases the dimensions of these bodies are larger than the distances from their respective primaries. 
Thus, the above assumption is not justified and the results obtained are far from the realistic approach. 
The lack of the sphericity or the oblateness of the planet causes large perturbations from the two-body 
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orbit. The motions of artificial earth satellites are examples. This enabled many researchers (e.g. [3],[9], 
[10], [11]) to study the restricted problems by taking into account the shapes of the bodies.  In stellar 
systems numerous examples are available where a body is moving under the gravitational field of one or 
two radiating bodies, for example, binary star systems (where both primaries radiate) or a sun-planet 
system (only one of the primaries radiate).  
 In studying the motion of a material point in the sun-planet system, the classical model of the 
restricted circular three-body problem is not valid. In this connection it is reasonable to modify the model 
by superposing a light repulsion field. As the solar radiation pressure force changes with the distance by 
the same law as the gravitational attraction force and acts opposite to it, it is possible to consider that the 
result of the action of this force will lead to reducing the effective mass of the massive particle. A series 
of papers (e.g. [1], [8], [11]) investigated the effect of radiation pressure in the restricted problem.  
Itraised a curiosity in our mind to study the present problem. This paper considers the stability of the 
collinear points under the effects of both oblateness and radiation of both primaries. So it differs from the 
other’s problem. 
 
2.0 Equations of motion 
 Using dimensionless variables and a synodic coordinate system (x, y) as Szebehely [12] and, 
Singh and Ishwar [11], the equations of motion of the third body of infinitesimal mass when both 
primaries are sources of radiation and oblate spheroids, are 
  xUynx =− &&& 2 , yUxny =+ &&& 2 ,     (2.1) 
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 Here dots indicate differentiation with respect to time t.  The parameter µ is the ratio of the mass 
of the smaller primary to the total mass of the primaries and 0<µ < ½.  n is the perturbed mean motion of 
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where Ai (i = 1,2) being oblateness coefficients of the bigger and the smaller primaries respectively. 
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are the mass reduction coefficients due to radiation, where Fi
p and Fi

g being the forces of gravity and light 
pressure respectively. 
 
3.0 Locations of Collinear Points 
 Equilibrium points are solutions of equations 0=xU  and 0=yU    (3.1) 

Ux and Uy can be written as 
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 The solution of Equation. (3.1) results in five points, three on the line joining the primaries, called 
the collinear points, and two forming triangles with the primaries, called the triangular points.   
 
 
The collinear points are denoted by L1, L2, L3 whereas triangular points by L4, L5.  To find the collinear 
points we write y = 0 in Equations. (3.1).   Their abscissae are the roots of the equation 
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 Now since 
( )
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 in each of the open intervals ),1(),1,( µµµ −−−∞  and ),( ∞µ , the 

function f is strictly increasing in each of them.  Also f(x) approaches ∞−  as x approaches ∞−  or 
0)1( +−µ  or 0+µ  and f(x) approaches ∞  as x approaches 0)1( −−µ  or 0−µ  or ∞ . 

 Therefore there exists one and only one value of x in each of the above intervals such that f(x) = 
0.  Further using Equations (2.3) and (2.4) in Equation (3.4) and restricting only linear terms in 
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 Therefore there are only three real roots of Equation (3.4), one lying in each of the open intervals 
( )1,2 −− µµ , ( )µµ ,1−  and ( )1, +µµ .  This shows the locations of the three collinear points L1, L2, 
L3. The first collinear point is located left of the second primary, the second is between the primaries, and 
the third collinear point is to the right of the first primary.  Three cases arise: 
Case 1: 
 We consider the model depicted in the following figure: 
 
                y 
 
 
       1L    µ=2m  r1 

                 µ−= 11m  x 

       ( )0,x       ξ=2r    ( )0,1−µ               0    ( )0,µ  

Here xr −= µ1 ,  12 −−= xr µ ,  Let ξ=2r  so that ,11 ξ+=r   ξµ −−= 1x .  Applying these in 
Equation (3.4), we get  
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In the classical case i.e. when ,11 =q   ,12 =q  ,01 =A  ,02 =A   Equation (3.5) becomes 

 ( ) ( ) ,02233 2345 =−−−−+−+ µµξµξξµξµξ     (3.6) 
 

Its series solution in powers of the quantity 
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Simplifying Equation (3.5), we have 
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 By Descartes’ rule of signs there is only one positive root of Equation (3.10), since the 
coefficients of the powers of ξ  change sign only once. 

 Let γ  be the value of ξ   in the classical case.  This implies that γ  is a real root of Equation 
(3.6). 
 Let the value of ξ   be slightly changed due to radiation and oblateness of the primaries.  Let the 

new value of ξ   be defined by  δγξ += , 1<<δ     (3.12) 

 Substituting this new value of ξ   in Equation (3.10) and making use of Equations (2.3), (2.4) in 

Equation (3.11) and considering only linear terms in ,,,,, 2121 ββδ AA  we obtain 
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 Using Equations (3.8), (3.13), (3.14) in Equation (3.12), we get the required solution of Equation 
(3.10).  Thus, we find the position of collinear point L1.  Similarly, we can obtain the positions of L2 and 
L3. 
 Since, the solutions contain )2,1(, =iA ii β .  Therefore, the locations of the collinear points are 

affected by radiation pressure and oblateness of the primaries. 
 
4.0 Stability of Collinear Points 
 The motion of the infinitesimal body will be stable near the equilibrium point when given a very 
small displacement and small velocity, the body oscillates for a considerable time around the said point. 
 Let u,v denote small displacements of the infinitesimal body from the equilibrium point (x0, y0).  
Putting ,0 uxx +=    ,0 vyy +=   in Equation (2.1) and then expanding its R.H.S. in a Taylor’s series 

and considering only first order terms, we have 

   ( ) ( )002 xyxx UvUuvnu +=− &&& , ( ) ( )002 yyyx UvUuunv +=+ &&&  (4.1) 

 Here only linear terms in u and v have been taken.  The second partial derivatives of U are 
denoted by subscripts.  The superscripts 0 indicate that the derivative is to be evaluated at the equilibrium 
point (x0, y0).  The characteristic equation corresponding to Equation (4.1) is  

   ( ) ( )( ) ( ) 04
200022004 =−+−+− xyyyxxyyxx UUUnUU λλ   (4.2) 

 If all the iλ  obtained from Equation (4.2) and pure imaginary numbers, then u and v are periodic 

and thus give stable periodic solutions in the vicinity (x0,y0).  If, however, any of the iλ  are real or 

complex numbers, then u and v increase with time so that the solution is unstable. 
 To examine the stability of collinear points we pay an additional attention to the evaluation of the 
second derivatives from Equations (3.2) and (3.3) on the line joining the primaries. 

 
( ) ( )

5
2

25
1

2

1
2 1

2)1(2)0,(
r

x
q

r

x
qnxgU xxx

µµµµ −++−−+==  

    
( ) ( )

,
1

6)1(6
7
2

2

227
1

2

11
r

x
qA

r

x
qA

µµµµ −++−−+  (4.3)  



Journal of the Nigerian Association of Mathematical Physics, Volume 9 (November 2005) 
Photo-gravitational restricted three-body problem   Jagadish Singh   J of NAMP 

( ) ( )
,

2

31

2

31
)0,(

5
2

225
1

113
2

2
3

1
1

2

r
qA

r
qA

r

q

r
qnxhU yy

µµµµ −−−−−−==    (4.4) 

    ,0)0,( == xyhU xxy      (4.5) 

First we consider the point corresponding to L1.  At this point 1rx −=− µ  and 21 rx −=−+ µ  and so 
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Also, of course, at all collinear points ,0)0,( =ixg  so  
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Equation (4.4) can be written in the form 
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 The analysis for L2 and L3 is quite similar and it does not present new problems. 

Thus, at collinear points, we have ,00 =xyU  ,00 >xxU  and .00 <yyU   Now the characteristic Equation 

(4.2) becomes ( ) ( )( ) .04 0022004 =+−+− yyxxyyxx UUnUU λλ   Because ( )( ) ,000 <yyxx UU   the 

discriminant is positive and the four roots of the characteristic equation can be written as  ,1 s=λ
,2 s−=λ ,'3 is=λ ,'4 is−=λ  where s and s’ are real.  So, the solution is unstable. Thus collinear points 

are unstable. 
 
5.0 Conclusion 
 We conclude that the locations of collinear points are affected by radiation pressure forces and 
oblateness of the primaries but their stability is not influenced by them, and they remain unstable. 
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