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 Abstract 
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The non-singularity of the controllability gramian, the properness of 
the differential system and the Schauder’s Fixed Point Theorem are 
veritable tools used to obtain results. 

 
   Keywords: Null Controllability, Schauder’s Fixed Point Theorem, Properness  
 
  pp 247 - 254 
 
1.0 Introduction:  
 In his paper [2], A.N. Eke posed an open problem; the problem of extending his results from a 
Euclidean space to a function space. This work is not unconnected with his work though with a little bias 
to discrete systems of the form. 
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 Investigations on null controllability of control system is not new. These have been done 
extensively by various authors. For instance, Shintendorf and Barmish [4], Chukwu [1] among others. 
What makes this paper unique is the application of a version of the Schauder’s Fixed Point Theorem to 
prove null controllability of the perturbed linear system. By the variation of parameter the solution of 

(1.1) is given by      { ] ×+
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where F(t, to) is the fundamental matrix solution of the system  (1.1) for B=o  with F(0) = I, the 
identity matrix. The null controllability is achieved by  imposing on (1.1) the boundary condition.  
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Here T is a bounded linear operator defined on of  space  the],[ nEEC +  all bounded and continuous 

operators from nE to E+ . 
 
2.0 Preliminaries 
 Let En denote the n-dimensional Euclidean space with norm denoted by • .  If J is any interval of 

E, the usual Lebesque space of square integrable function’s from J to En will be denoted by L2[J, En]. Nn,m 

will denote the collection of all real n x m matrices with a suitable norm.   Let h > 0, hi (t) > 0 be given.  
For functions  

   [ ]1o2 ,t( tLU = , En ),  t∈ [ ],, 1tto   

we use µt to denote the function on [ ]oh,−  defined by  

     [-h,0] s ),()( ∈+= stst µµ     (2.1) 

We shall consider the system (1.1) satisfied almost everywhere on (to, t1) where the integral is in 

Lebesque- Stielties sense with respect to s. ,E  )( n∈tx  [ ]  A(t), ),(L 1  2
n

o Ett∈µ is an n x n matrix 

valued function which is measurable in t.  We shall assume that B(t), Bj(t) are of bounded variation in s 

on [-h, 0]  for each [ ]1o t,t t ∈  and are absolute continuous in s on [-h, 0]. 

In the sequel, the control of interest is  

   [ ]( ) [ ]( )mEtot
mCtot ,1,2L  and ,1, 2L  ∈= µµ  

where 

     { }. // /:nE  mC ≤∈= µµ   

That is, the unit ball with zero in its interior relative to µ .  If X and Y are linear spaces and T; X 
→ Y is a mapping we shall use the symbols D (T), R (T) and N (T) to denote respectively the domain, 
range and null spaces of T. 
Definition 2.1 
 Let X and Y be normed linear spaces. An operator T: X→ Y is said to be completely continuous if 
T maps bounded sets in X into relatively compact sets in Y. A completely continuous operator is compact.  
Definition 2.2 
 An operator T: X →Y where X and Y are linear spaces is said to be closed if for any sequence 

 (t) D  ∈nu such that  v.Tu and)(  v, Tu andu    n →→→  T Dbelongs toun µ  

Definition 2.3 

 The complete state of system (1.1) at time t is given by � ( ) ( ){ }µ ,txt =   
Definition 2.4 (Proper system)  

 The system (1.1) is proper in En for t∈  (to, t1) if for , n
  C E∈  
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 U allfor   0C implies everywherealmost ∈= µ  
Definition 2.5 (Complete controllability) 
 System (1.1) is completely controllable if for every xo x1, ∈En, there exists a continuous function 
µ: I →En such that the solution of (1.1) satisfies 11)(t  and )( xxxtx oo == . It is null controllable with 

constraints at t =t1 for any initial state { } [ ]otoo thonx  ,t  , o −µ  if there exists an admissible control µ ∈u, 

defined on [to, t1 – h] such that the response x (t) of system (1.1) satisfies x(to) = 0 using the control effort. 
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Definition 2.6 (Domain of null controllability). 
 The Domain D of null controllability of the system (1.1) is the set of all initial points xo ∈En for 
which the solution x (to) =xo satisfies µ(t1) =0 ∈ En at some t1 using µ ∈ u. 
Definition 2.7 

Given system (1.2), set )0,0,(ˆ),,0,0,(ˆ t
x

f
BBt

x

f
AA o ∂

∂+=
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∂+=   where A and Bo are from system 

(1.1).  If the linear part satisfies Rank condition then it is completely controllable which it turn implies 
that the system (1.2) is also completely controllable. 
 
3.0 Main Results  
 Theorem 3.1: 
 The following are equivalent  

  (i) W(to,t1), the control grammian, is non singular (positive definite)  
  (ii) The system (1.1) is completely controllable on [to, t1] 

 (iii) The system (1.1) is proper on [to, t1] 
 Proof 
 To show that (i)⇒ (ii)  
 Let W-1 exists and define µ by  
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 where * denotes transpose. 
Thus we have found ,),,x(tsuch that  11 xxt oo =µ  hence the system is completely controllable.  

To show (i) ⇒ (iii).  If W(t o,t1) is nonsingular then it is positive definite and all the eigenvalues are 
positive.  Equivalently < ηW,η >…> 0 for all η ≠ 0 
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⇒ η = 0 hence the system (1.1) is proper on [0, t1] 
 To show (ii) ⇒ (iii).  Suppose the system is not proper then there exists η ≠ o such that  
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xi are all the points that can be attained using all the admissible controls  
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Therefore all the points that can be attained using all the admissible controls is a translation of a subspace 
of co dimension 1 and not Rn. This contradicts our supposition; hence complete controllability implies 
properness.  
Theorem 3.2: 
 The system (1.1) is proper on [to,t1] if and only if o∈ Int  R(to,t1) 
Proof 
 If y*∈ℜ (to,t1), then there exists a y ∈R(to,t1) and η ≠o,η∈ En such ηT(y-y ^) ≤ 0 

 That is    *yTyT ηη ≤  
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Since U is a unit sphere the last inequality holds for each µ ∈ U if and only if  
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almost everywhere and there exist η ≠ o for s∈ [to,t1]  
Theorem 3.3 
 The system (1.1) is proper if and only if 
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 System (1.1) is proper if an only if 
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since an analytic function can have almost a finite number of zeros. 
 By differentiating, we have  
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That is η is orthogonal to  
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Since η∈ En it means the vector  
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then there exists η∈ En, η ≠ o such that  
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Theorem 3.4: 
 The system (1.1) with the control µ (t) on (to-h,to) is null controllable with constraints at t = t1 if 
and only if  
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belongs to the range space of null controllability Gramian.  
Proof  
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Substituting (3.10) into the variation of parameter equation for system (1.1), we obtain 
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Conversely suppose for a contradiction that y (z(to) ) ∈ RΓ(to,t1) ) then there exists z, z2 ∈ E
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Since the integrand is non-negative, we obtain. 
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By hypothesis however, x(to) can be brought to the origin by some control effort on [to,t1].  That is  
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By combining (3.11) and (3.13) we obtain the contradiction // z //=o when z ≠ o. Hence y (z (to)) 
∈RΓ(to,t1)) 
Theorem 3.5: 

Consider f(t,x,µ) of the system (1.2).  Assume that 
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uniformly for t∈I.  If system (1.1) is completely controllable.  Then system (1.2) is also controllable  
Proof 

Assume that system (1.1) is completely controllable, choose xo,x1 ∈En and let  
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µ(t) is as defined. We now take 
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and T maps the convex closure of rl  into itself. 

Since f is bounded in rl , T ( rl ) is equicontinuous and hence relatively compact. By schauder Tyconov’s 

fixed point theorem, T has a fixed point  
T(x,µ) = (x,µ) 

Thus the integral equations (3.15a) and (3.15b) have solutions since xo,x1 , ∈ En are arbitrary.Thus the 
system (1.2) is completely controllable.  
4.0 Conclusion 
 Criteria for the null controllability of discrete nonlinear systems have been presented. It has been 
shown that, systems that are proper are null controllable and by direct application of the fixed point 
theorem of Schander, we established controllability for the perturbed system. 
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