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 Abstract 
 

In this work, sufficient conditions are developed for the relative controllability 
of perturbed nonlinear systems with time varying multiple delays in control 
with the perturbation function having implicit derivative with delays 
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1.0 Introduction 
 Controllability of systems presents a challenging but fascinating area of study in control theory.  
Several studies have been conducted on the controllability of linear systems (see [6, 9, 12]) and 
independent results obtained. 
 It is now known that true life dynamical systems are often nonlinear and non-deterministic since 
they are often affected by friction, noise, etc. Controllability of such systems has attracted lots of 
literature from several authors (see [1, 2, 3, 4, 5, 7, 8, 10, 11]). 
  There is however, no standard technique for the controllability of nonlinear systems, but 
the linearization and fixed point approach have proved useful and have been greatly in use. Various fixed 
point theorem have been applied in the controllability of nonlinear systems. In [7] and [8], the notion of 
linearization and Schauder’s fixed point theorem are used for the study of the relative controllability of 
nonlinear systems with distributed delays in the control. In [2], the measure of non-compactness of set 
and Darbo’s fixed point theorem are used to investigate the global relative controllability of nonlinear 
systems with time-varying multiple delays in control and having implicit derivatives. 
 From these studies one readily see the difficulty involved in converting a given nonlinear control 
system and making it satisfy the set of conditions for the application of a fixed point theorem of interest. 
For nonlinear systems having implicit derivative with multiple delays depending on both state and control 
variables, the problem is more complex, with the difficulty of making choice of appropriate state space 
and conditions to suit the fixed point of interest. The investigation of the relative controllability of such 
systems given by 
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is the main objective of this research work. 
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2.0 Basic notations and preliminaries 

 Let ),( ∞−∞=E and nE  be the n-dimensional Euclidean space with norm ⋅ .  The symbol 

)],0,[( nEhCC −= denotes the space of continuous functions mapping the interval 

nEhhh ∈>− ,0,]0,[ into
nE  with the suprenum norm .  defined by 

CSup
h

∈=
≤≤−

φθφφ
θ

,)(
0

 while ),]0,([ nEhCC −′=′  denotes the space of differentiable 

functions mapping the interval ]0,[ h−  into
nE .  

 Let ( )⋅,X  be the Banach space.  The measure of non-compactness of β  is given by 

ββµ :0{inf)( >= r can be covered by a finite number of balls of radii less than r }. For the space 

of continuous functions )],0,[( nEhC −′ , the measure of non-compactness of β  is given by   
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where ),( hβϕ is the common modulus of continuity of the functions which belong to the set β , that 

is    }:)()({supsup),( hstsxtxh
x

≤−−=
∈β
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for the space of differentiable functions )],0,[( nEhC −′  we have  
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where { }ββ ∈= xxP :&  

 If ],[ 10 ttt ∈  we let Cxt ′∈  be defined by ]0,[,)()( hsstxtxt −∈+= . Also, for 

functions 0,],[: 10 >→− hEthtu m
 and ],[ 10 ttt ∈ , then tu  denotes the functions on ]0,[ h−

defined by )()( stusut +=  for ]0,[ hs −∈ . The integrals are the Lebesgue Stieltjes sense. 

 We consider the system 
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with the following basic assumptions.  

  ∫− +=
0

)(),(,,()),(,(
ht stxtxstdxtxtL η  (2.2) 

satisfied almost everywhere such that the nn×  matrix valued function η is measurable in 

EEst ×∈),( and of bounded variation in s on ]0,[ h− .  There is a locally integrable function m on 

E  such that )()()),(,( txtmxtxtL t ≤  so that )),(,( txtxtL  is continuous, f  is an n-vector 
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continuous function with 0)),(),(( ≥ttutxh .  Let the initial function )(tφ  and the delay 

)),(),(( ttutxh be continuous and set  
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We assume that the function NiEtthi ...,21,0,],[: 10 =→  are twice continuously 

differentiable and strictly increasing in ],[ 10 tt .  Further  tthi ≤)(  for Nittt ...,2,1,0,],[ 10 =∈ . 

We introduce the time lead function ir  , (see [6]) with ],[)](),([:)( 1010 ttththtr iii →   Such that 

],[,...,,2,1,0))(( 10 tttNifortthr ii ∈== .  Without loss of generality, we assume that 

tth =)(0  and the following inequalities hold for 1tt =  
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substituting the arguments, txtx ,)( ,   and )(),( 10 ttttx ≤≤&  by arbitrary functions 

],[,, 10 ttCzvz n∈& respectively.  The state )(tx  is an n-vector and the control )(tu  is an m-vector.  

)),(,( txtxtL  is an nn×  matrix, ),,( ti xxtB  for i = 0,1,2,…, N are mn×  matrices and 

( )( ) )),(,,),(),((),( ttxxttutxhtxtuf t &− is an n-vector continuous function.  We assume that the 

elements jkn  of )...,,2,1,( nkjL =  and ijkb  of njBi ,...,2,1( =  and ),,...2,1 mk = for 

Ni ,,2,1,0 L=  are continuous functions satisfying: 
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where ),,2,1,0(, NiLM i L=  and K are some positive constants.  Also for every 

mn
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where ),...,2,1,0(, 21 Niandkk i =α are positive constants and 
3

1
0 2 ≤≤ k .  Define the norm of a 

continuous mn×  matrix valued function P  by  
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where jkP  are elements of P , for system (2.1), Let X  satisfy the equation  
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for )()(,10 ttxttt φ=≤≤ for  ],[ 0tt ∞−∈ with initial state  

     ( )ψφ,),()( 00 txty =  

 where )()( ssu ψ= for  ],,[ 00 thts −∈ .  Then )(),( 00 tttX φ is the solution of  

     ( )txtxtLtx ),(,)( =& . 

Using time lead function and the inequalities (2.3), the solution (2.5) can be expressed for 1tt =  as  
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Let us introduce the following notations for brevity. 
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Define the controllability matrix of (2.6) at time t  as  

  dsstGstGzttW T
n

t

t n ),(),(),,( 0
0

00 ∫=    (2.11) 

where T  denote the matrix transpose  
Definition 2.1 

 The set { }ψφ ,),()( txty = is to be the complete state of system (2.1). 
Definition 2.2 

 System (2.1) is said to be relatively controllable on ],[ 10 tt , if for every initial complete state 

)( 0ty  and every 
nEx ∈1 , there exists a control )(tu  defined on ],[ 10 tt  such that the corresponding 

trajectory of system (2.1) satisfies 11)( xtx = . 
 
3.0 Controllability Result 
Theorem 3.1 
 Assume that 

    inf def 
'

0 ,0),,( nCxzttW ∈>     (3.1) 

Then system (2.1) with conditions as in (2.4) is relatively controllable on ],[ 10 tt . 

Proof 

 Define the control )(tu  for ],[ 10 ttt ∈ as follows:  
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   ),,(),,(),,()( 10
1

0 ustqzttWzstGtu T −=   (3.2) 

where )( 0ty and 1x are chosen arbitrarily. The inverse of W is made possible by condition (3.1).  

Substituting (3.2) into (2.5) to replace )(tu  and using (2.10), (2.11) and (3.2), it is clear that the control 

)(tu  defined by (3.2) steers the initial complete state )( 0ty  to the final state 
nExtx ∈= 11)( .  The 

actual substitution of (3.2) into (2.5) yields 
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the right hand side of (3.2) and (3.3) as a pair of operators )(]),([2 tzuT and )(]),([1 tzuT
respectively.  Define the continuous nonlinear operator T which maps the space β  into itself by  

   [ ])()],[(;)()],[()()],[( 21 tzuTtzuTtzuT =   (3.4) 

Let us consider the closed convex subset of β  
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and define the positive constants 321 ,, KKK as follows 
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It is easily seen that T transforms H into itself and for each pair Hzu ∈],[ , we have  
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Thus all the functions )()],[(2 tzuT  have a uniformly bounded modulus of continuity, and are 

therefore equicontinuous. Note that all the functions )()],[(1 tzuT  are equicontinuous. We now 

consider the modulus of continuity of )()],([1 tzuTP for ),(, 10 ttst as  

≤− )()],[()()],[( 11 szuTPtzuTP  

)()],[()()()()],[()()( 11 szuTszsmtzuTtztm −  

 )()],[()()()()],[()()( 11 szuTszsmtzuTsztm −+  

  ∑
=

−+
N

i
iiii thuvsztBthuvtztB

0

))(()),(,())(()),(,(  

  ∑
=

−+
N

i
iiii thuvszsBthuvsztB

0

))(()),(,())(()),(,[(  

)),(,),)),(],[(),(((),()],[(( 22 ttzvttzuTtzhtztzuTf &−+   

 )),(,)),),),(],[(),(((),()],[(( 22 sszvssszuTszhtzszuTf &−−  

 )),(,),)),()],[(),(((),(]),([( 22 sszvsszuTszhszszuTf &−+  

 )),(,)),),()],[(),(((),(]),([( 12 sszvsszuTszhszszuTf &−−  (3.6) 



Journal of Nigerian Association of Mathematical Physics, Volume 9 (November 2005) 
Non linear systems with delays in state and control  Davis Iyai   J. of NAMP 

Taking upper estimates of the second, fourth and sixth terms of the right hand side of inequality (3.6) as 

)(),(),( 210 ststst −−− ψψψ  respectively where iψ  are non-negative functions, such that 

0)( =>− hi
him

oh ψ .  We find that the first, third and fifth terms of inequality (3.6) can be written as 
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hence 

   )(),())],,[(( 1 hhPzkhzuPT ψϕϕ +≤  
Thus we have for any set  

  HE ⊂ , )()( 1010 PEkEPT ϕϕ ≤ and 0)( 20 =ETϕ   

  where 1E  is the natural projection of the set E on ].,[ 10
' ttCn  Hence, it follows that 

    )()( EkTE µµ ≤  
 

 
By the Darbo’s fixed point theorem, the mapping T has at least one fixed point; therefore there exist 

function ],[ 10 ttCu m∈∗
and ],[ 10 ttCz n∈∗

such that 

  )()],[()( 1 tzuTtu ∗∗∗ =      (3.8) 

  )()],[()( 2 tuzTtz ∗∗∗ =      (3.9) 

Differentiating with respect tot  we see that )(tx  given by (3.9) is a solution to the system (2.1) for 

the control )(tu  given by (3.8), we find that any control )()( tutu ∗=  steers the system (2.1) from 

the initial complete state )( 0ty  to the desired vector nEx ∈ on the interval ],[ 10 tt  and, since 

)( 0ty  and 1x    have been chosen arbitrarily, then by definition (2.2) the system (2.1) is relatively 

controllable on ],[ 10 tt . 

3.1 Remark 
 If we assume that the nonlinear function satisfies a Lipschitz condition with respect to the implicit 

variable, the response is uniquely determined by the control )(tu  
 
4.0 Conclusion 
 Using the Darbo’s fixed point theorem, sufficient conditions for relative controllability of the 
perturbed nonlinear systems with time varying multiple delays in control with the perturbation function 
having implicit derivative with delays depending on both state and control variable have been derived. 
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