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Abstract

Necessary and sufficient conditions are established for the relative, absolute
controllability and null controllability of the generalized linear delay system
and its discrete prototype. The paper presents illuminating examples on
previous controllability results by Manitius and Olbrot [7] and carries over the
results of Onwuatu [8] and Klamka [4] to delay systems. It generalizes the
results of Sebakhy and Bayoumi [11]. An algebraic approach is adopted in
most of the proofs; while a manifestation of interest in the utilization of the
asymptotic behaviour of solutions of differential equations provides
computable criteria for relative null controllability of linear systems.
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1.0 Introduction
Quite unlike the ordinary differential control system whire action of the control is direct, a
delayed control on a linear system affects the evolution ofyiters in an indirect manner. Consider the

system

x(t)= Al)x(t)+ B(t)u(t) (1.1)
The action of the control is direct in the sense that the loefahviour of the trajectony(t) is affected
only by the local behaviour of the controft) at timet. However, it is known that most natural
applications give rise to mechanisms of indirect action, evtiee decisions in the control function u are
shifted, twisted or combined before affecting the evolution. Amela of this delay action are the
models defined by the discrete system:

p p
x® = Alt-h) + 2 B(tult-h) h =0 (1.2)
i=0 i=0
and the generalized linear delay system defined by
0
() = LX) + [[dsH(t,s)u(t + )] (1.3)
-h

Klamka [4] and Onwuatu [8] have previously investigated thkative controllability of ordinary
differential systems with delay in control, settling thesntrollability and null controllability problem in
the affirmative. Chukwu [1] considered linear delay systbatswithout delays in the control variable.
He established his result using limited controls. Balaclemndn [9, 10] has demonstrated some
techniques of effectively tackling the controllability prabk of both linear and non linear ordinary
systems with distributed delays in the control. Manitus ando©JB} have obtained some controllability
results for discrete systems.

Owing to the obvious difficulty of handling the many lags in both gtate and control variables,
not many studies are undertaken to investigate the contrdilatfiliinear delay systems with distributed
delays in control. These systems are therefore the subjectrefiritethis research.
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The present endeavour is to obtain conditions for the relagm&adlability and relative null
controllability of system (1.3). Computable criteria for the contrditgiif (1.2) are also investigated.

2.0 Basic Notations and Preliminaries

Let n andm be positive integersE, the real line g, ©). We denote b¥" the space of real-
tuples with the Euclidean norm denoted 4jyj|is any interval oE; the usual Lebesgue space of square
integrable (equivalent classes of) functions from E" be denoted by d(J, E)). Li([to, t],E")denotes the
space of integrable functions from[ty, t;] to E". N, will be used for the collection of all nxm matrices
with a suitable norm.

Leth > 0 be given. For functions[to—h, t] - E", t/]to, t;] we usex, to denote the function on
[-h, O] defined byx(s) = x(t + s) for €1[-h, 0]. C = C([-h, 0],E") is the space of continuous functions
mapping the interval y 0] into E. Similarly for functions utp — h, t] - E™, tO[t,, t;], we use uto
denote the function onH; 0] defined byu(s) = u(t + s) for sJ[-h, 0]. We shall consider the system

0= Lx)+ JlosH i+ 5] 2
where -
00 0
L(t,x) = kZAkx( - W )+ J'A(t,H)x(t+9) (2.2)
=0 “h

satisfied almost everywhere ag, [t;] where the integral is in Lebesgue-stieltges sende negpect tc,
x(t) O C, u O Ly([to, ta]; L(t, @) is continuous ir, linear in@. H(t, s) is ann x m matrix valued function
which is measurable in (t, s). We shall assume that H{,af)bounded variation in s orh[-0] for eacht
O [to, ta] with var.n, o H(t, 5) < m(t); wherem(t) OL; ([to, t1], E") andH(t, s) are absolutely continuous in s
on [h, 0], A(t) O L; ([to, ta], Mnm). Throughout the sequel, the control sets of interedB aré([to, t1],
E™), U 0L, ([to, ta], E™) a closed and bounded subset of B with zero in the interior relatie to

If XandY are linear spaces afid X - > Yis a mapping, we shall use the symbgf), R(t) and
N(T) to denote the domain, range and Null spaces of T respectively.
Definition 2.1 (Complete State)

The complete state of system (2.1)iate t is given by

2(t) = {x(t). % u} (2.3)

Definition 2.2 (Relative controllability)

System (2.1) is relatively controllable op, [ti] if for every initial complete state gJtand every
X1 [7E" there exists a control 1/ B such that the corresponding trajectory of system (2.1) isatis(t),
= Xi1.

If (2.1) is relatively controllable on each interval,[tt] t; > to, we say (2.1) is relatively
controllable.
Definition 2.3 (Relative Null Controllability)

System (2.1) is said to be relatively null controllable attf, # for any initial complete state g\t

= {X(to), X, , Uy }on[to—h, ] there exists an admissible control u{f)B defined on [ t,] such that
the response x(t) of the system satisfig$ x{t 0.

It is relatively null controllable with constraint at t it for any initial state [xd), X, ,
uto] on [ty — h, t] there exists an admissible contrdlllJ defined on 4, t;] such that the response x(t) of
(2.1) satisfies xg) = 0.
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Definition 2.4 (Absolute Null Controllability)
System(2.1) is said to be absolutely null controllable at t i if for any initial complete state

z(t) = [x(to), X, , U, Jon[to—h, ] there exists an admissible control u{f)B defined orfto, t,—
h] such that the response x(t) of the system satisfi@s>qtusing the control effort
aft) = ut) on  [to.ty]
utt) = (0 on [tl - h,tl]
2.1 Variation of Constant Formular for the Solution of System (2.1)
The above conditions on L@ and H ensure the existence of a unique absolutely continuous

solution x(t) of (2.1) with initial complete stateg(t
The solution of system (2.1) is of the form

(2.4)

t 0
X(t, to, @ U) =X(t, ) @0) + [ X(t, r)! [dsH (7, s)u(r + s)}dr (2.5)
to h
where
Xi(s, sP=X(t+6,s);-h<6<0 (2.6)
and X(t, s) is the fundamental solution of
X () = L(t, %) (2.7)
satisfying
M(att’—s) = L(t, X(*, s)); t=sa. e.int( 9 (2.8)
(O s—h<t<s
Xt 9 = . . . (2.9)
1 t =s ;1 identitymatrix
Using the unsymmetric Fubini's theorem for ttHte solution (2.5) of system (2.1) becomes.
0 t1
X(ty to, @, U) = X(t, to)@(0) + J' dy jx(tl,r)H (r,s)u(s+ r)dr
-h to
0 f1+s
= X(t1, t)@(0) + J'dH j X (tlr - s)H (r - S, s)u(r)dr
-h tg+s
This implies
0 to
X(t, o, @ U) = X(, 0)@0) + [dy| [X(7-sJH (T -5 8y (7)
-h  |to+s
0 U+s
+ jdH J'X(tlr—s)H (r - s s\u(r)dr (2.10)
-h to
By letting
Fl(tls):(H(t,S) fort<t;, sOE 2.1
0 fort>t,sOE
we obtain
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0 to
X(ty, to, @, U) =X(ty, to)@(0) + J' dy J' X(tl,r - s)H (r -S, s)utodr

_h tO+S
0 1 o
+ jdH IX(tl,r—s)H (r-s,s)u(r)dr (2.12)
-h to
Using again the unsymmetric Fubini’'s theorem, we have
0 to
Xt to @ U) = X, 8) €O)*+ [dy| [ X (o7 - sH(r -5 ugdr
-h |tos
t1f 0
+ I [ j X (tlr - s)dﬁ(r -5, s)] u(t)de (2.13)
toL-h

we now define tha x n controllability matrix of (2.1) by

W(to, ) = }[ ? X(ty7 - s)dH (z - s, s)}[ ? Xty 7 - s)dF (7 - s, s)] dr  (2.14)

toL—h -h
Where the symbol T denotes the matrix transpose
Definition 2.5
The Reachable set B(t;)) of(2.1)at time t is the subset of "Bjiven by
t11] O
P to) = | {J'X(tlr ~ sl (r -, s)}u(r)dr :ubdU (2.16)
tolL—-h
The constraint reachable set with unspecified end time is given pyoR:étUR(tlto)
t1=tg

Definition 2.6 (Proper systems)
Systen(2.1)is said to be proper in"Eon [to, t;] if

0
CT{ IX(tlr—s)iﬁ(r—s, s)] =0 (2.17)
-h

a.e., f[to, t;], c O E"implies that ¢ = 0. IfZ.1)is proper on each intervaldtt;], t; > to > 0, we say that
the system is proper &'

3.0 Relative controllability results
3.1 Proposition
The following statements are equivalent:
(1) W(t, t1) is non — singular for each>tty
(i) System(2.1) is proper in E for each interval [§, t,].
(iii) System(2.1)is relatively controllable on each interval|t;]
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Proof (i) = (ii)
Let

t11 O T
W(to, ) = j[jx(tlr s)dH (r- ss][jx(tlr s)dH (r- ss)] dr
toL—h h

Define the operator K: Ato, t;],E™) - E"

t1/ 0

K(u) = J{J’ X(t;, 7 - s)dH (7 - s, s)}u(r)dr (3.1)
toLh

K is a continuous linear operator from a Hilbert space to another. Ri{)<,] E" is a linear subspace and

its Orthogonal complement satisfies the relation.

R(K))” = N(K) (3.2)

K:E"--->UDL,
By the non-singularity of W, t,) the symmetric operat#tK™ = W(t,, t;) is positive definite and hence

{R(K)}" = {0} (3.3)
N(K") = {0} (3:4)

whereK’ is the adjoint of K

By (3.2)

Forany cJE", ulL,
(c, Kuy = (K'c,up

(c, Kup = Jlﬁx(tlr S)dH (7 - ss)} u(r)dr (3.5)
oLh

t
{
jc [J' X ty.7 ~ s)dH (7 - ss)} u(r)dr (3.6)
ThusK’ is given by

0

C - CT{ j Xty 7 - s)dH (r -5, s)}; 7 Oto.ta]
-h

N(K") is therefore the set of all suct E" such that

0
cT[ | X[t 7 - s)dH (7 - s s)} =0 (3.7)
-h
a.e infto, t1].
SinceN(K") = {0}, all suchc are equal to zero i@= 0
This establishes the properness of system (2.1)
(i) = (iii).

We now show that if system (2.1) is proper then it is relgtiventrollable on each intervaty]
t]]. Letc O E", if system (2.1) is proper then

Journal of Nigerian Association of Mathematical Physics, Volume 9 (November 2005)
Relative controllability and null controllability V. A. lheagwam and J. U. Onwuatu J. of NAMP



0
c’ jX(tlT - S)dﬁ(r -S, S) =0; a.e H[to, t] for each timpliesc=0

-h
Thus
t1 0 .
[ jx(tlr ~sJdH (r - s,5) [u(r)dr = 0
to L-h
for u OL.. It follows that the only vector orthogonal to the set
f11 O
Rlt.tg) = I jx(tlr - s)dH(r -s,s)u(r)dr:uDL,
toLto

is the zero vector, hence {R(t)}” = {0}. i.e R(k, t) = E". This means that the system is Euclidean
controllability and hence this establishes relative controllability pm]of system (2.1) see ref [8]
(iii)y = (i)

We now show that if the system is relatively controbatiien controllability grammiakV =
W(to, t1), is non-singular. Let us assume for contradiction thatsWirigular. Then, there exists an n
vectorv # 0 such that

VWV =0 (3.8)
Then
t1)( | O o 2
| jx(tlr—s)dH(r—s,s) dr =0 (3.9)
toll L-h
This implies that
— 0 2
v jx(tl, r—-s)dH (7 -s, s)] =0.ae
L—-h
hence
0 JR—
jX(tl,r—s)dH (r—s,s)} =0.ae (3.10)
-h

for t O [to, t1]. This contradicts the assumption of properness of the syiteev z 0. This completes
the proof:

We now give another condition for relative controllability of the syg{2r)
Theorem 3.1

Systen(2.1)is relatively controllable if and only if @7/interior R(t, t,) for each 1> to
Proof

R(t, to) is a closed and convex subset 8f ETherefore, a point;yon the boundary of R(to)
implies there is a support plafeof R(t, to) through y. That is &(y — y1) < 0 for each yIR(ty, t) where
c# 0is an outward normal f@. If u, is the control corresponding te we have,

t t
T jl[jgh X(tl r—s)dH(r—s,s)}u(r)dr < cl jl [ ?X(tlyr—s)dH(r—s,s)
to toL-h

ug (r)dr

(3.11)
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For each Ul U, since U is a unit sphere this last inequality holds faruiif and only if

T 1r o O 4 T (0 0
c I[j_h X(r - s,s)dH(r - s, s)u(r)dr} < j[c I_h X(tlr - s)iH (r-s, s)}uldr
to to
1 0
= I c’ jx(tlr—s)dﬁ(r—s, s)dr (3.12)
tol -h
and
0
w(®) =sgn & [X(tr - s)H (r -s.9) (3.13)

-h
as yi is on the boundary. since we always havéR{t;,ty), if 0 were not in the interior of R(tt) then it is
on the boundary. Hence from preceding argument this implies that

il
0= ”CT X(t,7 - s)dH (7 - s, s)‘dr (3.14)

to
so that

0
c’ [x (L7 - SjH (r -s,5) = 0ae., O [to, t]
-h
This by definition of properness of systems implies thasyiséem is not proper, sincé% 0. Hence, if 0
O int R(t, t).

0
c’ J'X(tlr—s)dﬁ(r—s,s) =0,
-h
a.e., Hto, ] would imply ¢ = 0 proving properness; and by proposition 3.1, we conctidieve
controllability of system (2.1) on each interval.

4.0 Discrete System
Consider the discrete system

P P
xt)= > Alxt-h)+ > Btult-h) (4.2)
i=0 i=0
where x(t) OE", u(t) OE", A.(t), B|(t) are time varying matrices of dimensions n x n and n x m

respectively defined and continuous ant, hi are delays with 0 =gk h <h,<...<hp =h.
The solution of the equation is given by

)= Xptohlio)+ 3 [ X(e.5+h)A (o+ h ols)is

1=0tp_hy
tl p
+[X(t,5)> B (shu(s—1y)ds (4.2)
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This formula can be rewritten as

)= Xwtobo)+ 3 TX(0s+hA(s+h sk

1=0tg_hy
p to p 1
+3 [ X({t,;s+hi)B(s+hlug(s)ds+ Y [ X(t,s+h)Bi(s+h)u(s)ds (4.3)
i=0 to-h 1=0t
If we now set
p
z(ts) = Y X(t.s+h)B(s+h) (4.4)

1=0

Then (4.3) becomes

p
X(t) = X(t, )@lto) + Y- [ X(t,5+K)A(s+ 1 )p(s)ds

1=0'[O
to ¢
+ j X (t,s+1)Bj (s+h )upy (s)ds+ [Z(ts)u(s)ds (4.5)
tg—hj to

Assume piecewise continuity of Z(t,s) with respect to f§ araking use of arguments as in proposition
(3.1) above, we get the following conditions for relative controllabiitgystem (4.1)
Lemma 4.1
The systeni4.1)is relatively controllable on [t t)] if and only if for y/7E" the relation yZ(t,, S)
=0 on [t, t] impliesy =0 (T denotes transpositjon
Proof
Immediate from proposition 3.1
We provide another condition for the controllability of system (4.1)
Lemma 4.2
The system is relatively controllable og ft] if

t
rank jZ(t,s)ZT(t,s)ds =n (4.6)

to
Proof
Relative controllability from prop. 3.1 implies that the namgsilarity of the grammian Wtt,);
implies that the symmetric operator

Ly}
jZ(t, s)ZT (t,s)ds
to
is positive definite. But this holds if and only if
il
rank Z(t,s)ZT (t,s)ds} =n
to
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Due to obvious difficulty in the use of these criteria when tlarimnvalued function Z(t,s) cannot be
analytically obtained, an attempt was made in [7] to provide cabfmtcriteria for relative
controllability of system (4.1) using determining equation and properties,sj.Z(t

LetJ=(4, &,..., J), where J,i = 0,1, 2,..., p are integers (not necessary positive) with

p
b=>J (4.7)
i=0

and Let Ebe a similarly defined multi index with E= &k (Kronecker delta) fork = 0, 1, 2, ...;
p.
Clearly

|El=1

Assume A(t), Bi(t) are § — 2) @ — 1) continuously differentiable oty,[t;] respectively. IfH = (hy, hy,
..., ), we set

p
<J,H>=>"Jh (4.8)
i=0
we define the determining equation as reported in [7] as follows
p
d
QAW D=2 Al) Q1(0-E t-<EH>) -3 Q_ (- B 1) (4.9)
i=0

fork=1, 2, ....g— 1,t O[to, t;] such that

B(t) tOtg.4] for J=E
Q. 1)= )
0 otherwise

We deduce from (4.9) and (4.10) that

) Q(, )= Ofor | Jgk+21orfor0

(i) If some A(t) or B(t) are undefined for t > then Q(, t); with J=0, |J|=k+ 1, k=0, 1, 2,...,
g— 1 is undefined for < t,.

(iii) Q«(, ©): |I]# k + 1 is undefined also for t E( H) <ty and by induction fot- (J, H)< t,.

Set

(4.10)

_ 9-1
X (I4)= D x(Rt)for RI=p=k+1,and RH>=<J H>  (4.11)
k=0
With R= (o, rs,..., Ip), I'i are integersWe have the following result

Theorem 4.1
Assume At), Bi(t) are (n — 2), fi — 1) continuouslydifferentiable on [§, t] respectively then
system(4.1)is relatively controllable on {f t;] if

rank Q (t) =n (4.12)
O, (t) ={0c(3,8),k=0,1, ...n—1j :t.— @, H) 2 to}

The proof is contained in Manitius and Olbrot [Agre an example is given to illustrate the
theorem.

Example 4.1
Consider the discrete autonomous system with lag in both state and control

X (1) = AoX(t) + Ax(t — 1) + ax(t — 2) + Bu(t) + Biu(t—1) + Bu(t — 2) (4.13)
where
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SR A S Y RS

(1 0 (1 0 (0 1
o5 o) meloof =i o
Heren=k =2

Take H= (R, h, ) = (0, 1,2)3= (o, I, ) = (-1, 2, ), R=(fo, 11, 12) = (1, 4, 0)
From the definition, E=0y,1=0,1,2s0, =0, E=0,BE=1and<J,H> =§jihi =0+2+2+4
i=0

2
<R, H>=>rih =0+4+0=4
i=0

2 2

|j|=ZJi =-1+2+1=2 |R|=Zri =1+4+0=5
i=0 i=0

Qn ={%@;k=0,1,..n-Lt,- 3, H >t}

Q ={Q();k=0,Lt,- A, H =t}
={Q(9), Q) t— 4=t}

By definition
2
Q@)= Y, QR)for |R|=|J| =k+1andR, H'= @, H
n=0
ThereforeQ, (J) = Qo (R) and Q; (J) = Qu(R)
But
2
QM) =D AQ-1(-E) k=12, ...
i=0
_[B for J=FE;
Q) = {O for other J
Hence
Q(R) =B = Lo
-1 0

(GG e e e s
(s

- - A 10 00O
rankQ, =rank{ Q, (J), Q;(J): i - 4=t} = rank 1030 =2=n

Journal of Nigerian Association of Mathematical Physics, Volume 9 (November 2005)
Relative controllability and null controllability V. A. lheagwam and J. U. Onwuatu J. of NAMP



Invoking theorem 4.1, we conclude that system (4.13) is relatively conteoftat > t, + 4

5.0 Relative Null Controllability Results
Definition 5.1

Domain D of relative null controllability of system (2.1) is theddedll initial functionsg//C for
which the solution of2.1)with x = ¢ satisfies xg) = 0 at somejtusing u//U
Theorem (5.1)

If system(2.1)is relatively controllable on |t t; > to then the domain of null controllability of
(2.1) contains zero in its interior.
Proof

Assume system (2.1) is relatively controllable gntfi, t; > t, then by theorem (3.1), O Int
R(t, t,), for each{= t,. Sincex = 0 is a solution of (2.10) with u = 0, we havel®. Hence, if QI intD
then there exists a sequenge,§ [0 D such thatp, -~ 0 as m- o and no@, is in D (so@, # 0). From
the variation of constant formula, we have.

0 to
0# X{t,to, @n 1) = X (tr,to)into) + [ dH J'X(tlr ~sH(r-s, S),d7
-h to+s
t11 O
+J' jx(tl,r—s)dﬁ(r—s,s) u(r)dr; for, t > to, usU
toL—h
Hencez, defined by
0 to
Zm = —x(tl,to,qn,o)— [d jx(tlr ~sH(r-s, S),d7
~h [to+s
is not in R(, to) for any t > t,.. Therefore, the sequencg @ E"is such that Z 0 R(t;, t), z, # 0 but 2
- 0asm- «. Therefore @ Int R(t, ty). This is a contradiction and hence proves tHatiét D.
Theorem 5.2

Assume (i) systerf2.1)is relatively controllable oty t;] for each { > t, (ii) the zero solution of the
system:
x(t) = L{t.x) (5.1)

is uniformly asymptotically stable, so that the solution of (5.1)fesifx(t)|| <k|| || e_“(HO) where
a> 0, k >0 are constants
Then system (2.10) is relatively null controllable with constraint.
Proof

By condition {) and theorem (5.1) the domain D of relative null controllabilitf 19f contains
zero in its interior. Therefore there exists a balsBch that @1 B, [1 D. By (ii) every solution of (2.1)
with u = 0) satisfies x(tof@,0) - 0 as t— . Hence at somg & oo x(t,t, ¢,0) 0B, 0 D for § > to.
Therefore using;tand % = x(t, to, @, 0) as initial data, there exists @W and some,t> t; such that the
solution x(t,{, X3, u) of (2.1) satisfies x{tt;, x;, u) = O.
This completes the theorem
51 Realisations from Theorem 5.2

Recall that system (2.1) is relatively control&lbin |§, t1| if and only if rank W@, t;) =
n. System (2.1) is relatively null controllable itonstraint if (i) rank W {{ t1)) =n for g >
(ii) the zero solution of system (5.1) is unifornalgymptotically stable.
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Definition 5.2 (Closed Operator)

An operator T: X— Y where X and Y are linear spaces is said tolbsed if for any
sequence] D(T) such that g — uand Ty — v, u belongs to D(T) and Tu =v.
Theorem 5.3

Assume system (2.1) is null controllable agtj]tthen for each@XC, there exists a bounded
linear mapping f: C- L, such that the control u =gfhas the property that the solution(@f1) satisfies

X (Clo, @, U) =@ andx(ty, to, @, fg) = 0

Proof
From the variation of parameter equation (2.13), if we set
Tt e = Xt )o (5.2)
then T is a continuous linear operator from-GC. Now define S(t): L— E" by
0 ‘0
S(thu = j_hdH jx(tl, r-sH(r -s, s)utodr
to+s
t[ 0 B
+[| [x (ty.7 — s)oH (r - 5,9) [u(r)d7 for 7 Oto,t] (5.3a)
toL—h

clearlySt) is a linear map. The boundednes§oy follows from the assumptions on H(t,s). From (5.2)
and (5.3) the equations (2.13) can be written asty(tp, u) = T(t, )@(to) + S(Hu, H|t, t]. That system
(2.1) is null controllable is equivalent to the statement that feryef 1C there exists alll, such that

T(t, to)#to) + S(t)u =0 (5.3b)
This implies that

T(ty, t) E" 7S(B) (5.4)
(5.4) holds by hypothesis
Let N be the null space of S and denote the orthogonal complemeninoB My N’ . Let §: N -
S()B be the restriction of Sjtto N". Then $* exists and is linear. Since & is not necessarily
closed in B & is not necessarily bounded. In (5.3b) we define, f» 8 by fp=-§™ T(t:, to)@; then,

X(t o, @, f@) = T(t t)AO) + S (-S)T(t, t)@®) =0
Thus,x(ty, to, @ fo = 0.
It now remains to prove that f is bounded. tpebe a convergent sequence in C such tpat f

converges in B and lgf = limgy u=Ilimfg

n-oo

Since N is closed in B, ON" andT(t,,.to) ¢to) + S(b)u= Lim (T(ty,te)@n(to) + S(W)u,) =0
n- o

Thus u = $'T(t,,to)@ = f. And therefore by the closed graph theorem f is bounded
Theorem (5.4)
The system (2.1) with the contru[0 (t) on [ty — h,t] is null controllable att =,1tf and only if

0o fo
y(z(t) =-@to) - jdH j[x(tlr - s)H (r -, s)utodr]
-h 1o

belongs to the range space of the null controllability grammian

Mtot,) = :j: Efjx(tlr ~spH(T- s,s)}[_?hx (tyT —s)dH(t - as)}T dt
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Proof (Sufficiency)
Let y(z(b)) O R( (o, t1)) then for g0E" we have y(z@)) = I(to, t1)Zo choose

u(s) = ?[X(tlr‘s)dH(T—S,S)FZo sOto-h.t]
-h

0 s [tl - h,t]_]
then substituting (5.5) into the variation of parameter equation for (2.1) in Z2Idhtain

(5.5)

x(t,tg, u) = Xty to) edto) + JQdH tfx(tlr—s)H (r—s,s)utodr

* j jqx(tﬂ - S)H (r - s, s)u(r)dr = X (ta.to)[- y(zlto)]]+ X (tw.to)r (i to) 20

= X(t1, to)/Tto, 1) 20 + X(ty, )/ (t1,t0)20 =0
establishing null controllability.
Necessity
Suppose for a contradiction, thay{g(t)) LR/ (to, t,) then there existg, z [JE" such that

y(z() = za+ 2z 27 0

where
2 [R(/to, 1)), Z2LN(/Tto, 1))
Thus
tl_h 5 ti-h O -
@l t)z) = [ ITlo )z I dz= [l [X(to, T~ 9)dH(t = ss)" 2, ll e
tg -
to

since the integrand is non-negative, we obtain

0 T
[jx(to,r—s)dﬁ(r—s,s)} 2,=0 t0[tg,t; =] (5.6)
-h

By hypothesis, however,

(x(to), %q - Uto) can be brought to the origin by some control efforttgn,] i.e

1Jb { JQ X(to7 ~s)aH (r s S)]U(T)df =0 (5.8)

to L—h

ZZT{ JQX (to.7 - sl (r - s, s)]u(r)dr =0 (5.9)
~h

By combining (5.6) and (5.9) we obtain the contradiction
lzIf=0= =0
but by assumption,z 0

Hence,
Y(Z(to)) OR(T (to, t)).
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5.2.  Null controllability with constraint
Theorem 5.5
Assume(2.1) is relatively null controllable with 4 controls then it is locally relatively null
controllable with constraint
Proof
Since (2.1) is relatively null controllable by theorem 5.5, theebounded linear operator f: C

- B such that for eacip [1 C the solution x(t,of @, f¢) of (2.1) satisfiesxtO (v, to, @ f@) = @ X(t, o, @,

fg) = 0. Because f is continuous, it is continuous at the orijinHence, for each neighhourhoogd of
the origin L, there exists a neighbourhood iN C such that f(B) [0 N;. In particular N can be chosen to
be any open set in B containing zero which is contained in U, since U is a closed and bounded Bubset of
which has zero in its interior. Hence, there exists an open, sbbhd the origin in C such that f#)NN;
0 U.. Every@dN, can be steered to zero by the control up£l). Hence (2.1) is locally relative null
controllable with constraint.
Theorem 5.6

Assume(i) system(2.1) is relatively null controllable on {t t;} for each t > t, (ii) the zero
solution of the systemx(t) = L(t, %) is uniformly asymptotically stable then systéPnl) is null
controllable with constraint.
Proof

Condition (i) and theorem 5.3 guarantee an open hall i€ such that everg 00 N; can be
steered to zero point of'®ith controls from U in time;t< . Condition (ii) ensures that every solution
of system (5.1) which is a solution of (2.1) with u = 0 satisf{gsty, ¢, 0) - 0 ast - . Thus using u
= 0, there exists a kK o such that x = x(t, t, @, 0)J N; with x; and § as initial data there existg* t,
such that for some U U x(t;, t, X5, U) = % and Xx(t,to, X, u) = 0. Thus, the control

_foin ot
u in [tz,t3]
transfergpto the origin in timet< . This completes the theorem.
The above results on the null controllability of system (2&k) easily be shown to apply to the discrete
system (4.1). To this end we state the following theorems: withoutsproof

Theorem 5.7
Assume system (4.1) is relatively controllable gnt{t, t; >ty (ii) the zero solution of the system

p
X =2 A OxE-h (5.10)
i=0
is uniformly asymptotically stable, so that the solutio(baf0)satisfies
[IX®| Kk ||@ ||e_°'(t_t°) a >0, k > 0 are constants
Then system (4.1) is relatively null controllable with constraint
Theorem 5.8

The systerfd.1) with the controlut0 (t) on [ty — h, t] is null controllable at t =t if and only if.

k o
V(o)) = ~¢lto) = . [ X(tz.srniJBi s+ h)ugg (S)ds
|=O'[0—hl
belongs to the range space of the null controllability grammian.
The null controllability grammian is giveoy

T
Mto.ta) = Zk:Lt:E
i=1 +1 p

X5+ ho)Bo(s+ )| | 3 X o5+ ho s+ )| dis
0 p
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Theorem 5.9

Assumdi) system(4.1) is relatively controllable ong[tt;] for each { > t, (ii) the zero solution of
system(5.10) if uniformly asymptotically stable, then systédnl) if relatively null controllable with
constraint.

6.0 Computable Criteria for Relative Null Controllability of Discrete Systems.

We can now state an algebraic condition for the relative nultatadtility of system (4.1). Here
we exploit the results previously obtained on the relative coalribty of the system (4.1) by Manitius
and Olbrot [7], together with the fact that if the zero solutiogystem (5.10) is uniformly asymptotically
stable that is de&( A) = 0 has roots with negative real parts, where

n
ANA) =h-> e 6.1)
i=0
since null controllability could be proved by assuming contrditglnf the system and the asymptotic
stability of the free system, we have the following
Theorem 6.1
Systen{4.1)is relatively null controllable with constraint diy, ti], t; >t if

()  rankQ, (t)=n

where

Qn (tl) = {Q (‘]! 1‘1)1 k = 01 1’ -y N '1it' <‘]H> 2 tO}
(i) The roots of d&&(A) = 0 of (5.10) have negative real parts.

We now give a concrete touch to the sequel by considering ttieufzarsystem which has A, B,
C, B as constant matrices of appropriate dimensions.
Consider the system

X(t) =AX(t) + Bx(t—h) + Cu(t) + Du(t - h) (6.3)
This system shares much in common with the system studied by Gahi [4]
X (1) = A@)x(t) + B(t)x(t-w(t)) + C(t)u(t) + D(t)u(t-h(t)) + gjt (6.4)

for t0J and x(t) = q(t) for@I-w(0), O], Gahl [3] obtained for system (6.4) that if C(tIC=a constant
matrix, h(t) > 0 and w(}) > O then the system will be completely controllable on J if rank

[C, At)C]=n (6.5)
The application of this result to system (6.3) is immediate.tieosystem to be relatively controllable on
the interval [¢, t]; t1 > t, rank[C, AC] =n we now obtain the form of the unique absolutely continuous

solution of the system (6.3) satisfying the conditilas&p0 =0
This is given by
to to
X(t) = X(ty,to)@ + j X(t, s+ h)B(s + hyp(s) ds+ j (X (t,s)C(s)

+ X(t, s+h)D(t + )i, (s)ds + j N h(X(t,s)c(s)
+ X(t,s + h)D$+h))u(s)ds+'[t A X(t,s) C(s)u(s)ds (6.6)
The controllability grammian is given by

W(to.ty) = I [x(t;,5)C(s) + X (tg, 5+ h)D(s + h)| [x(t,s) C(s) + X(t, s+h)D(s + h)],
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t
+ j X (t, s)c(s)c(SX(t, s)ds (6.7)
th
and the null controllability grammian is given by
Mto.ty) jt t;_h[x(t,s) C(s) + X(t, s + h)D(s + h)][x(t, ) C(S) + %(& + h)D(s + h)ids.  (6.8)

Theorems 5.7, 5.8, 5.9 are applicable to syste8).(6.
6.1 Examples

In order to shed more light on our articulations, let us consider the followingpées
Example 1

x(t) = Ax(t) + Bx(t — h) + Cu(t) 4du(t — h) (6.9)

2 2 01 10 0O
A= B = C= D=
5d e=lod) =60 o=l 3
We first obtain
2 21 O 2 2
AC = =
2 e o2 0

rank[C,AC] = rank{1 0 2 O} =2=n

where

0 0 -20
This establishes the relative controllability of the system.

We now show that the zero solution of the free part of the syistemiformly asymptotically
stable. Let us first obtain

O S (e
Jie )

2 A+5+e M

detA(A)= 22 +31+de™ -6=0

Comparing this result with the equatidh+ b\ + gAe™ + k = 0 which according to Driver, [2] in pg. 32
example 3 will have negative real parts for its roots if b > g, b >0, g > 0.

In the light of this, we conclude that the roots of the atteristic equation for the system (6.9
have negative real parts since

b=3, g=1,3>1 3>0, 1>0.

Hence the zero solution of the free part of system (6.9) i®mamij asymptotically stable. Hence we
conclude that the system (6.9) is relatively null controllable with constrai

(6.10)

Example 2
Consider the system

x(t) = Axx(t) + Ax(t — 1) + AX(t — 2) + BuU(t) + Bu(t — 2) + Bu(t — 2) (6.11)
where
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S I L IR

By = 1 O B = 11 B, = 0 1
-2 0 oo 110
This is the discrete autonomous system (4.13) with lag in botétake and control whose controllability
has been settled previously we now show that the free panedystem is uniformly asymptotically

sable.
The free part of the system is obtained whenu =0 i.e.

X(t) = Ax(t) + AX(t — 1) + Ax(t-2)

The solution of the system is uniformly asymptotically stable if x(f) as t- co.
This can happen if the roots of the characteristic equation of thpdrebave negative real parts.

Detp] — (Ao + A + Ae?]=0

A0 2 2 -A
De - 9 ¢ Lioll=0
0 A -2 - 0 e_/]
A2 —(2+e-2A)
2 A+5+e

De =0

MN+B\+Ae? -2 -10-28+4+2&=0
M+ +Ae"-6=0

Comparing this result, with the equatidh+ b\ + qAe" + k = 0 whose roots will have negative real parts
ifb>q,b>0,q>0. (See Driver [2] pp 32 example 3)

We conclude that the roots of the characteristic equation of thensys3ehas negative real part —
b=19g=13>1,3>0,q>0. Hence the zero solution of thepieeis therefore uniformly
asymptotically stable.

Taking together, the relative controllability of the systmd the uniform asymptotic stability of
its free part, we conclude in the light of theorem (5.9) thakesy46.10) is relatively null controllable
with constraint.
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