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 Abstract 

Necessary and sufficient conditions are established for the relative, absolute 
controllability and null controllability of the generalized linear delay system 
and its discrete prototype.  The paper presents illuminating examples on 
previous controllability results by Manitius and Olbrot [7] and carries over the 
results of Onwuatu [8] and Klamka [4] to delay systems.  It generalizes the 
results of Sebakhy and Bayoumi [11].  An algebraic approach is adopted in 
most of the proofs; while a manifestation of interest in the utilization of the 
asymptotic behaviour of solutions of differential equations provides 
computable criteria for relative null controllability of linear systems. 

   
  pp 221 - 238 
 
1.0 Introduction 

Quite unlike the ordinary differential control system where the action of the control is direct, a 
delayed control on a linear system affects the evolution of the system in an indirect manner.  Consider the 
system  

( ) ( ) ( ) ( ) ( )tutBtxtAtx +=&    (1.1) 
The action of the control is direct in the sense that the local behaviour of the trajectory x(t) is affected 
only by the local behaviour of the control u(t) at time t.  However, it is known that most natural 
applications give rise to mechanisms of indirect action, where the decisions in the control function u are 
shifted, twisted or combined before affecting the evolution.  An example of this delay action are the 
models defined by the discrete system: 

x& (t) = ( ) ( )∑
=

−
p

i
ii htxtA

0

 + ( ) ( )∑
=

−
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i
ii htutB

0

;  hi  ≥ 0   (1.2) 

and the generalized linear delay system defined by 

x& (t)  =  L(t, xt) + ( ) ( )[ ]∫
−

+
0

,
h

s stustHd      (1.3) 

Klamka [4] and Onwuatu [8] have previously investigated the relative controllability of ordinary 
differential systems with delay in control, settling their controllability and null controllability problem in 
the affirmative.  Chukwu [1] considered linear delay systems but without delays in the control variable.  
He established his result using limited controls.  Balachandran in [9, 10] has demonstrated some 
techniques of effectively tackling the controllability problems of both linear and non linear ordinary 
systems with distributed delays in the control.  Manitus and Olbrot [7] have obtained some controllability 
results for discrete systems. 

Owing to the obvious difficulty of handling the many lags in both the state and control variables, 
not many studies are undertaken to investigate the controllability of linear delay systems with distributed 
delays in control.  These systems are therefore the subject of interest in this research.   

 



Journal of Nigerian Association of Mathematical Physics, Volume 9 (November 2005) 
Relative controllability and null controllability V. A. Iheagwam and J. U. Onwuatu J. of NAMP 

 
 
The present endeavour is to obtain conditions for the relative controllability and relative null 

controllability of system (1.3). Computable criteria for the controllability of (1.2) are also investigated. 
 

2.0 Basic Notations and Preliminaries 
Let n and m be positive integers.  E, the real line (-∞, ∞).  We denote by En the space of real n-

tuples with the Euclidean norm denoted by |•|; j is any interval of E; the usual Lebesgue space of square 
integrable (equivalent classes of) functions from J → En be denoted by L2(J, En).  L1([t0, t1],E

n)denotes the 
space of integrable functions from L1[t0, t1] to En.   Nnm will be used for the collection of all nxm matrices 
with a suitable norm. 

Let h > 0 be given.  For functions x:[t 0 – h, t1] → En, t∈[t 0, t1] we use xt to denote the function on 
[-h, 0] defined by xt(s) = x(t + s) for s∈[-h, 0].  C = C([-h, 0],En) is the space of continuous functions 
mapping the interval [-h, 0] into En.  Similarly for functions u:[t0 – h, t1] → Em, t∈[t0, t1], we use ut to 
denote the function on [-h, 0] defined by ut(s)  =  u(t + s) for s∈[-h, 0].  We shall consider the system 

( ) ( ) ( ) ( )[ ]∫
−

++=
0

,,
h

st stustHdxtLtx&      (2.1)  

where 

( ) ( ) ( ) ( )∑ ∫
∞

= −
++−=

0

0

,,
k h

kkt txtAwtxAxtL θθ     (2.2) 

satisfied almost everywhere on [t0, t1] where the integral is in Lebesgue-stieltges sense with respect to s, 
x(t) ∈ C, u ∈ L2([t0, t1]; L(t, φ) is continuous in t, linear in φ.  H(t, s) is an n x m matrix valued function 
which is measurable in (t, s).  We shall assume that H(, s) is of bounded variation in s on [-h, 0] for each t 
∈ [t0, t1] with var[-h, 0] H(t, s) ≤ m(t); where m(t) ∈L1 ([t0, t1], E

n) and H(t, s) are absolutely continuous in s  
on [-h, 0],  A(t) ∈ L1 ([t0, t1], Mnm).  Throughout the sequel, the control sets of interest are B = L2([t0, t1], 
Em),  U ⊆ L2 ([t0, t1], E

m) a closed and bounded subset of B with zero in the interior relative to B. 
If X and Y are linear spaces and T: X - > Y is a mapping, we shall use the symbol D(t), R(t) and 

N(T) to denote the domain, range and Null spaces of T respectively. 
Definition 2.1 (Complete State) 

The complete state of system (2.1) at time t is given by  

( ) ( ){ }tt uxtxtz ,,=     (2.3) 

Definition 2.2 (Relative controllability) 
System (2.1) is relatively controllable on [t0, t1] if for every initial complete state z(t0) and every 

x1 ∈ En there exists a control u ∈ B such that the corresponding trajectory of system (2.1) satisfies x(t1),  
=  x1.   

If (2.1) is relatively controllable on each interval [t0, t1] t1 > t0, we say (2.1) is relatively 
controllable. 
Definition 2.3 (Relative Null Controllability) 
 System (2.1) is said to be relatively null controllable at t = t1, if for any initial complete state z(t0)  
= {x(t0), 

0t
x ,

0t
u } on [t0 – h, t0]  there exists an admissible control u(t) ∈ B defined on [t0, t1] such that 

the response x(t) of the system satisfies x(t1)  =  0.  
 It is relatively null controllable with constraint at t  = t1, if for any initial state [x(t0), 

0t
x ,  

0tu ] on [t0 – h, t0] there exists an admissible control u ∈ U defined on [t0, t1] such that the response x(t) of 

(2.1) satisfies x(t1)  =  0. 
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Definition 2.4 (Absolute Null Controllability) 
 System (2.1) is said to be absolutely null controllable at t = t1, if for any initial complete state 
z(t0) = [x(t0),  

0t
x , 

0t
u ] on [t0 – h, t1] there exists an admissible control u(t) ∈ B defined on [t0, t1 –  

h] such that the response x(t) of the system satisfies x(t1) = 0 using the control effort 

  ( ) ( ) [ ]
[ ]





−
=

11

10

,0

,

thton

ttontu
tu     (2.4) 

2.1 Variation of Constant Formular for the Solution of System (2.1) 
 The above conditions on L(t, φ) and H ensure the existence of a unique absolutely continuous 
solution x(t) of (2.1) with initial complete state z(t0). 
 The solution of system (2.1) is of the form  

  x(t, t0, φ, u) = X(t, t0) φ(0) + ( ) ( ) ( ) ττττ dsusHdtX
t

t h
s∫ ∫ 













+

0

0

,,   (2.5) 

where 
    Xt(•, s)θ = X(t + θ, s); - h < θ < 0   (2.6) 
and X(t, s) is the fundamental solution of  
     x& (t) = L(t, xt)     (2.7) 
satisfying 

   
∂X(t, s)

∂t
   = L(t, Xt(•, s)); t ≥ s a. e. in (t, s)    (2.8) 

 X(t, s)  =  




=
<≤−

matrixidentity    1  ;  1

0

st

sths
     (2.9) 

Using the unsymmetric Fubini’s theorem for t = t1 the solution (2.5) of system (2.1) becomes. 

 x(t1 t0, φ, u) = X(t1, t0)φ(0) + ( ) ( ) ( )∫ ∫
−
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This implies 

 x(t1, t0, φ, u)  =  X(t1, t0)φ(0) ( ) ( ) ( )
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By letting  
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we obtain  
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 x(t1, t0, φ, u) = X(t1, t0)φ(0) + ( ) ( )∫ ∫
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Using again the unsymmetric Fubini’s theorem, we have  

 x(t1, t0, φ, u) = X(t, t0) φ(0)+ ( ) ( )
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we now define the n x n controllability matrix of (2.1) by  

 W(t0, t1)  =  ( ) ( ) ( ) ( )∫ ∫∫ 












−−














−−

−−

it

t

T

hh

dssHdstXssHdstX

0

0

,1

0
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Where the symbol T denotes the matrix transpose 
Definition 2.5 
 The Reachable set P(t1, t0)  of (2.1) at time t1 is the subset of En given by  

 P(t1, t0)  =  ( ) ( ) ( )∫ ∫












∈













−−

−

1

0

0

,1 Uu  :,
t

t h
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The constraint reachable set with unspecified end time is given by R(t1, t0) = 

01

0,1 )(
tt

ttUR
≥

 

Definition 2.6 (Proper systems) 
 System (2.1) is said to be proper in En on [t0, t1] if 

   ( ) ( ) 0,
0

,1 =













−−∫

−
ssHdstXC

h

T ττ     (2.17) 

a.e., t∈[t0, t1], c ∈ En implies that c = 0.  If (2.1) is proper on each interval [t0, t1], t1 > t0 > 0, we say that 
the system is proper in En 

 
3.0 Relative controllability results 
3.1 Proposition 
 The following statements are equivalent: 

(i) W(t0, t1) is non – singular for each t1>t0 
(ii) System (2.1) is proper in En for each interval [t0, t1]. 
(iii) System (2.1) is relatively controllable on each interval [t0, t1] 
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Proof  (i) ⇒ (ii) 
 Let  
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Define the operator K: L2([t0, t1],E
m) → En 

 

   ( ) ( ) ( ) ( )∫ ∫ 
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t h

dussHdstXuK ττττ    (3.1) 

K is a continuous linear operator from a Hilbert space to another. Thus, R(K) ⊂ En is a linear subspace and 
its Orthogonal complement satisfies the relation. 
    (R(K)) ⊥ = N(K*)      (3.2) 
where K*  is the adjoint of K 
    K* : En --- > U ⊂ L2 
By the non-singularity of W〈t0, t1〉 the symmetric operator KKT = W(t0, t1) is positive definite and hence 
    {R(K)} ⊥ = {0}       (3.3) 
By (3.2) 
    N(K*) = {0}       (3.4) 
For any c ∈ En, u ∈ L2 
 〈c, Ku〉  =  〈K*c,u〉 

  〈c, Ku〉 = ( ) ( ) ( )∫ ∫ 
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Thus K* is given by 

   ( ) ( ) [ ]10,;, ttssHdstXcc
0

h
1,
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−−→ ∫
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N(K*) is therefore the set of all such c ∈ En such that 
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−
ssHdstXc
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a.e in [t 0, t1]. 
Since N〈K*〉 = {0}, all such c are equal to zero i.e c = 0 
This establishes the properness of system (2.1) 
(ii)⇒ (iii). 
 We now show that if system (2.1) is proper then it is relatively controllable on each interval [t0, 
t1].  Let c ∈ En, if system (2.1) is proper then  
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for u ∈L2. It follows that the only vector orthogonal to the set 
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is the zero vector, hence  {R(t1, t0)}
⊥ = {0}.  i.e R(t1, t0) = En.  This means that the system is Euclidean 

controllability and hence this establishes relative controllability on [t0, t1] of system (2.1) see ref [8] 
(iii) ⇒ (i) 
 We now show that if the system is relatively controllable then controllability grammian W =  
W(t0, t1), is non-singular.  Let us assume for contradiction that W is singular. Then, there exists an n 
vector v ≠ 0 such that  
     vWvT = 0      (3.8) 
Then 
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This implies that  
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hence 
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h

ττ . a.e    (3.10) 

for t ∈ [t0, t1].  This contradicts the assumption of properness of the system since v ≠  0.  This completes 
the proof: 
 We now give another condition for relative controllability of the system (2.1) 
Theorem 3.1 
 System (2.1) is relatively controllable if and only if 0  ∈ interior R(t1, t0) for each t1 > t0  
Proof 
 R(t1, t0) is a closed and convex subset of En.   Therefore, a point y1 on the boundary of R(t1,t0) 
implies there is a support plane Π of R(t1, t0) through y1.  That is cT(y – y1) ≤ 0 for each y ∈R(t1, t0) where 
c ≠  0 is an outward normal to Π.  If uI is the control corresponding to y1 we have,  
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For each u ∈ U, since U is a unit sphere this last inequality holds for u ∈ U if and only if 
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and 

   u1(t)  = sgn  cT ( ) ( )ssHdstX
h

,
0

,1 −−∫
−

ττ    (3.13) 

as y1 is on the boundary. since we always have 0 ∈R(t1,t0), if 0 were not in the interior of R(t1, t0) then it is 
on the boundary.  Hence from preceding argument this implies that  

   0 ( ) ( )∫ −−=
1

0

,1 ,
t

t

T dssHdstXc τττ     (3.14) 

so that 

   ( ) ( ) ;0,,1
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=−−∫
−

ssHdstXc
h

T ττ a.e., t ∈ [t0, t1] 

This by definition of properness of systems implies that the system is not proper, since cT ≠ 0. Hence, if 0 
∈ int R(t1, t0). 

   ( ) ( ) ;0,,1

0

=−−∫
−

ssHdstXc
h

T ττ  

a.e., t∈[t0, t1] would imply c = 0 proving  properness; and by proposition 3.1, we conclude relative 
controllability of system (2.1) on each interval.  
 
4.0 Discrete System 
 Consider the discrete system 

    ( ) ( ) ( ) ( ) ( )∑ ∑
= =

−+−=
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&   (4.1) 

where x(t) ∈En, u(t) ∈En, A1(t), BI(t) are time varying matrices of dimensions n x n and n x m 
respectively defined and continuous on [t0, t1), hi are delays with 0  =  h0 < hI < h2 < … < hp  = h. 
The solution of the equation is given by  

( ) ( ) ( ) ( ) ( ) ( )dsshsAhstXtttXtx ii

p t

iht
i φφ +++= ∑ ∫

= −01

0

0

001 ,,  

     + ( ) ( ) ( )∫ ∑ −
=

1

0 0

,
t

t
i

p

i
i dshsusBstX    (4.2) 
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This formula can be rewritten as  
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If we now set  

   Z(t,s)  =  ( ) ( )∑
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p
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,     (4.4) 

Then (4.3) becomes 

x(t) = X(t, t0)φ(t0) + ( ) ( )∑ ∫
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iii dsshsAhstX

01

1

0

)(, φ   

  ∫
−

++++
0

0
0 )()(),(

t

iht
tiii dssuhsBhstX ( ) ( )∫

t

t0

dssus,tZ    (4.5) 

Assume piecewise continuity of Z(t,s) with respect to t; and making use of arguments as in proposition 
(3.1) above, we get the following conditions for relative  controllability of system (4.1) 
Lemma 4.1 
 The system (4.1) is relatively controllable on [t1, t0] if and only if for y ∈ En the relation yTZ(t1, s)  
≡ 0 on [t0, t1] implies y  = 0 (T denotes transposition). 
Proof 
Immediate from proposition 3.1 
We provide another condition for the controllability of system (4.1) 
Lemma 4.2 
 The system is relatively controllable on [t0, t1] if  

   rank ( ) ( ) ndsstZstZ
t

t

T =












∫
0

,,      (4.6) 

Proof 
 Relative controllability from prop. 3.1 implies that the non-singularity of the grammian W(t0, t1); 
implies that the symmetric operator 

     ( ) ( )dsstZstZ
t

t

T ,,
1
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is positive definite. But this holds if and only if  
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Due to obvious difficulty in the use of these criteria when the matrix valued function Z(t,s) cannot be 
analytically obtained, an attempt was made in [7] to provide computable criteria for relative 
controllability of system (4.1) using determining equation and properties of Z(t,s). 
Let J = (J0, J1,…, Jp), where Ji , i  =  0, 1, 2,…, p are integers (not necessary positive) with  

     |J| = ∑
=

p

i
iJ

0

     (4.7) 

and Let Ei be a similarly defined multi index with Ei  =  δik (Kronecker delta) for k  =  0, 1, 2, …; 
p. 
Clearly 
     |EI | = 1 

Assume A1(t), BI(t) are (q – 2) (q – 1) continuously differentiable on [t0, t1] respectively.  If H = (h0, h1, 
…, hp),  we set  

     < J, H > = ∑
=

p

i
iihJ

0

    (4.8) 

we define the determining equation as reported in [7] as follows 

 Qk(J, t) = ( )tA
p

i
i∑

=0

 Qk – 1 (J – Ei,  t – <Ei, H >) - 
d
dt  Qk – I (J – E0, t)   (4.9) 

for k = 1, 2, …, q – 1, t ∈[t0, t1] such that  

  Q0 (J, t) = 
( ) [ ]



 =∈

otherwise

forttttBi

0

EJ  , i10    (4.10) 

We deduce from (4.9) and (4.10) that 
(i) Qk(j, t) =  0 for |J| ≠ k + 1 or for J ≥ 0 
(ii)  If some AI(t) or BI(t) are undefined for t > t0 then Qk(j, t); with J ≥ 0, |J| = k + 1, k = 0, 1, 2,…, 
 q – 1 is undefined for t < t0. 
(iii)  Qk(j, t): |J| ≠ k + 1 is undefined also for t – (EI, H) < t0 and by induction for t- (J, H)< t0. 
Set  

  ( ) ( )∑
−

=
=

1

0
1 ,,

q

k
kk tRQtJQ for |R| = |J| = k + 1, and < R, H> = < J, H > (4.11) 

With R = (r0, r1,…, rp), r i are integers .  We have the following result 
Theorem 4.1 
 Assume Ai(t), BI(t) are (n – 2), (n – 1) continuously differentiable on [t0, t1] respectively then 
system (4.1) is relatively controllable on [t0, t1] if   

    rank nQ̂  (t1) = n     (4.12) 

nQ̂ (t1)  = { kQ̂ (J, t1), k = 0, 1, …, n – 1; j : t1 – (J, H) ≥ t0} 

The proof is contained in Manitius and Olbrot [7], here an example is given to illustrate the 
theorem. 
Example 4.1 
Consider the discrete autonomous system with lag in both state and control  
 x& (t) = A0x(t) + A1x(t – 1) + a2x(t – 2) + B0u(t) + B1u(t – 1) + B2u(t – 2)   (4.13) 
where 
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Here n = k = 2 
Take H = (h0, h1, h2) = (01, 1, 2) J = (J0, J1, J2) = (-1, 2, 1), R = (r0, r1, r2) = (1, 4, 0) 

From the definition, Ei = δik, i = 0, 1, 2 so, E0 = 0, E1 = 0, E2 = 1 and < J, H > = ∑
=

2

0i
iihj  = 0 + 2 + 2 + 4  

  < R, H > = ∑
=

2

0i
ii hr   = 0 + 4 +0 = 4 

  |j| = ∑
=

2

0i
ij   = - 1 + 2 + 1 = 2  |R| = ∑

=

2

0i
ir   = 1 + 4 + 0 = 5 

  nQ̂   = { kQ̂ (J); k = 0, 1, …, n – 1, t1 - 〈J, H〉  ≥  t0} 

  2Q̂  = { kQ̂ (J); k = 0, 1; t1 - 〈J, H〉  ≥  t0} 

         = { 0Q̂ (J), Q1 (J); t1 – 4 ≥ t0} 
By definition  

  nQ̂ (J) = ∑
=

2

0n

Q(R) for |R| = |J| = k + 1 and 〈R, H〉 = 〈J, H〉 

Therefore 0Q̂ (J) = Q0 (R) and 1Q̂ (J) = Q1(R) 
But  

  Qk(J) = ∑
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2

0i
iA Qk – 1 (J – E) ; k = 1,2, … . 
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  Q0(R) = B0 =. 








− 01

01
 

Q1(R) = A0B0 + A1B1 + A2B 

= 















+
















−
+
















−− 01

10
 

00

00

00

01

10

10

01-

01
 

52

22
 = 








+







+








00

00

00

00
 

03

00
 

 









=

03

00
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Invoking theorem 4.1, we conclude that system (4.13) is relatively controllable for t1  ≥ t0 + 4 
 
5.0 Relative Null Controllability Results 
Definition 5.1 
 Domain D of relative null controllability of system (2.1) is the set of all initial functions φ ∈ C for 
which the solution of (2.1) with xt = φ  satisfies x(t1) = 0 at some t1 using u ∈ U 
Theorem (5.1) 
 If system (2.1) is relatively controllable on [t0, t1 > t0 then the domain of null controllability of 
(2.1) contains zero in its interior. 
Proof 
 Assume system (2.1) is relatively controllable on [t0, t1], t1 > t0 then by theorem (3.1), 0 ∈ Int 
R(t0, t1), for each t1 ≥ t0. Since x = 0 is a solution of (2.10) with u = 0, we have 0 ∈ D.  Hence, if 0 ∉ int D 
then there exists a sequence {φ m} ⊆ D such that φm → 0 as m → ∞ and no φm is in D (so φm ≠ 0).  From 
the variation of constant formula, we have. 
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Hence zm defined by 
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is not in R(t1, t0) for any t1 > t0. Therefore, the sequence zm ⊆ En
 is such that Zm ∉ R(t1, t0), zm  ≠ 0  but  zm 

→ 0 as m  → ∞.  Therefore 0 ∉ Int R(t1, t0).  This is a contradiction and hence proves that 0 ∈ Int D. 
Theorem 5.2 
Assume (i) system (2.1) is relatively controllable on [t0,t1] for each t1 > t0  (ii) the zero solution of the 
system: 
    ( ) ( )txtLtx ,=&       (5.1) 

is uniformly asymptotically stable, so that the solution of (5.1) satisfies ||x(t)||  ≤ k|| φ || ( )0tte −α−  where 
α > 0, k > 0 are constants. 
Then system (2.10) is relatively null controllable with constraint. 
Proof 
 By condition (i) and theorem (5.1) the domain D of relative null controllability of (1) contains 
zero in its interior.  Therefore there exists a ball B1 such that 0 ∈ B1 ⊆ D.  By (ii) every solution of (2.1) 
with u = 0) satisfies x(t, t0, φ,0) → 0 as t → ∞.  Hence at some t1 < ∞  x(t,t0, φ,0) ∈B1 ⊆  D for  t1 > t0.  
Therefore using t1 and x1  = x(t1, t0, φ, 0) as initial data, there exists a u∈U and some t2 > t1  such that the 
solution x(t,t1, x1, u)  of (2.1) satisfies  x(t2, t1, x1, u)  =  0. 
This completes the theorem 
5.1 Realisations from Theorem 5.2 
 Recall that system (2.1) is relatively controllable on |t0, t1| if and only if rank W(t0, t1)  =  
n. System (2.1) is relatively null controllable with constraint if (i) rank W (t0, t1)  = n for t1 > t0  
(ii) the zero solution of system (5.1) is uniformly asymptotically stable. 
 
 



Journal of Nigerian Association of Mathematical Physics, Volume 9 (November 2005) 
Relative controllability and null controllability V. A. Iheagwam and J. U. Onwuatu J. of NAMP 

 
Definition 5.2 (Closed Operator) 
 An operator T:  X →  Y where X and Y are linear spaces is said to be closed if for any 
sequence un ∈ D(T) such that un → u and Tun → v, u belongs to D(T) and Tu =v. 
Theorem 5.3 
 Assume system (2.1) is null controllable on [t0,t1] then for each φ∈C, there exists a bounded 
linear mapping f:  C → L2 such that the control u = fφ has the property that the solution of (2.1) satisfies 
    0tx (⋅,t0, φ, u) = φ and x(t1, t0, φ, fφ) = 0 

Proof 
 From the variation of parameter equation (2.13), if we set  
    T(t, t0)φ  =  X(t1, t0)φ      (5.2) 
then T is a continuous linear operator from C → C.  Now define S(t):  L2 → En by  
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clearly S(t) is a linear map.  The boundedness of S(t) follows from the assumptions on H(t,s).  From (5.2) 
and (5.3) the equations (2.13) can be written as x(t1, t0, φ, u) = T(t, t0)φ(t0) + S(t)u, t∈|t0, t1|.  That system 
(2.1) is null controllable is equivalent to the statement that for every φ∈C there exists a u∈L2 such that 
     T(t1, t0)φ(t0) + S(t1)u = 0    (5.3b) 
This implies that  
     T(t1, t0) E

n ⊆ S(B)    (5.4) 
(5.4) holds by hypothesis  
Let N be the null space of S and denote the orthogonal complement of N in B by N⊥ .  Let S0:  N

⊥ → 
S(t1)B be the restriction of S(t1) to N⊥.  Then S0

-1 exists and is linear.  Since S(t1)B is not necessarily 
closed in En, S0

-1 is not necessarily bounded.  In (5.3b) we define, f:  C → B by fφ = -S0
-1 T(t1, t0)φ; then,  

   x(t1, t0, φ, fφ)  =  T(t1, t0)φ(Θ) + S(t1) (-S0
-1)T(t1, t0)φ(Θ) = 0 

Thus, x(t1, t0, φ, fφ  = 0. 
 It now remains to prove that f is bounded.  Let φn be a convergent sequence in C such that fφn 
converges in B and let φ  = 

∞→
′

n
nφlim  u = lim fφn 

 Since N⊥ is closed in B, u∈N⊥ and T(t1,.t0) φ(t0) + S(t1)u = 
∞→n

Lim  (T(t1,t0)φn(t0) + S(t1)un)  = 0  

Thus u = S0
-1T(t1,t0)φ  =  fφ.  And therefore by the closed graph theorem f is bounded  

Theorem (5.4) 
The system (2.1) with the control 

0t
u (t) on [t0 – h,t0] is null controllable at t  =  t1 if and only if  

   y(z(t0))  = - φi t0) - ( ) ( )[ ]∫∫ −−
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belongs to the range space of the null controllability grammian  
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Proof (Sufficiency) 
 Let y(z(t0)) ∈ R(Γ(t0, t1)) then for z0∈En we have y(z(t0))  =  Γ(t0, t1)z0, choose  

 ( ) ( ) ( )[ ] [ ]
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then substituting (5.5) into the variation of parameter equation for (2.1) in 2.12, we obtain  
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             = -X(t1, t0)Γ(t0, t1)z0 + X(t1, t0)Γ(t1,t0)z0  = 0 
establishing null controllability. 
 Necessity 
 Suppose for a contradiction, that is y(z(t0)) ∉R(Γ(t0, t1) then there exists z1, z2 ∈ En

  such that 
     y (z(t0))  =  z1 + z2;        z2 ≠   0 
where 
    z1∈R(Γ(t0, t1)), z2∈N(Γ(t0, t1)) 
Thus 

 〈z2, Γ(t0, t1)z2〉 = ( )∫
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since the integrand is non-negative, we obtain  
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By hypothesis, however, 
(x(t0), 0tx , 0tu ) can be brought to the origin by some control effort on [t0, t1] i.e  
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By combining (5.6) and (5.9) we obtain the contradiction 
|| z2 ||

2 = 0 ⇒  z2 = 0 
but by assumption z2 ≠  0 
 
 
Hence, 

y(z(t0))∈R(Γ(t0, t1)). 
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5.2. Null controllability with constraint  
Theorem 5.5 
 Assume (2.1) is relatively null controllable with L2 controls then it is locally relatively null 
controllable with constraint. 
Proof 
 Since (2.1) is relatively null controllable by theorem 5.5, there is a bounded linear operator  f:  C 
→ B such that for each φ ∈ C the solution x(t, t0, φ, fφ) of (2.1) satisfies 

0t
x (•, t0, φ, fφ)  =  φ,  x(t1, t0, φ, 

fφ) = 0.  Because f is continuous, it is continuous at the origin En.  Hence, for each neighhourhood N1 of 
the origin L2 there exists a neighbourhood N2 in C such that f(N2) ⊆ N1. In particular N1 can be chosen to 
be any open set in B containing zero which is contained in U, since U is a closed and bounded subset of B 
which has zero in its interior.  Hence, there exists an open set N2 around the origin in C such that f(N2) N1 
⊆ U..  Every φ∈N2 can be steered to zero by the control u  = fφ ∈U.  Hence (2.1) is locally relative null 
controllable with constraint. 
Theorem 5.6 
 Assume (i) system (2.1) is relatively null controllable on [t0, t1} for each t1 > t0 (ii) the zero 
solution of the system x& (t) = L(t, xt) is uniformly asymptotically stable then system (2.1) is null 
controllable with constraint. 
Proof 
 Condition (i) and theorem 5.3 guarantee an open ball N1 ⊆ C such that  every φ ∈ N1 can be 
steered to zero point of En with controls from U in time t1 < ∞.  Condition (ii) ensures that every solution 
of system (5.1) which is a solution of (2.1) with u = 0 satisfies x(t, t0, φ, 0) → 0  as t  → ∞.  Thus using u  
= 0, there exists a t2 < ∞ such that x2  =  x(t2, t0, φ, 0)∈ N1 with x2 and t2 as initial data there exists t3 > t2 
such that for some u ∈ U x(t2, t2, x2, u)  =  x2 and x(t3,t2, x2, u) = 0.  Thus, the control  

    
[ ]
[ ]




=
32

10
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ttinu

ttin
w  

transfers φ to the origin in time t1 < ∞.  This completes the theorem. 
The above results on the null controllability of system (2.1) can easily be shown to apply to the discrete 
system (4.1).  To this end we state the following theorems: without proofs. 
Theorem 5.7 
 Assume system (4.1) is relatively controllable on [t0, t1], t1 > t0  (ii) the zero solution of the system  

    x& (t) = ∑
=

p

i
iA

0

(t) x (t – hi)    (5.10) 

is uniformly asymptotically stable, so that the solution of (5.10) satisfies  

   ||x(t)|| ≤ k || φ || )tt( 0e −α−  α > 0, k > 0 are constants 
Then system (4.1) is relatively null controllable with constraint  
Theorem 5.8 
 The system (4.1) with the control 

0t
u (t) on [t0 – h, t0] is null controllable at t = t1 if and only if. 
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belongs to the range space of the null controllability grammian. 
The null controllability grammian is given by  
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Theorem 5.9 
 Assume (i) system (4.1) is relatively controllable on [t0, t1] for each t1 > t0 (ii ) the zero solution of 
system (5.10) if uniformly asymptotically stable, then system (4.1) if relatively null controllable with 
constraint. 
 
6.0 Computable Criteria for Relative Null Controllability of Discrete Systems. 
 We can now state an algebraic condition for the relative null controllability of system (4.1).  Here 
we exploit the results previously obtained on the relative controllability of the system (4.1) by Manitius 
and Olbrot [7], together with the fact that if the zero solution of system (5.10) is uniformly asymptotically 
stable that is det.∆( λ)  =  0 has roots with negative real parts, where 

    ( ) ∑
=

−−=Λ
n

i

ih
ieA

0
1

λλλ     (6.1) 

since null controllability could be proved by assuming controllability of the system and the asymptotic 
stability of the free system, we have the following   
Theorem 6.1 
 System (4.1) is relatively null controllable with constraint on [t0, t1], t1 > t0 if  

(i)  rank nQ̂ (t1) = n 
where 

 nQ̂ (t1)  = { Q̂ (J, t1), k = 0, 1, …, n -1:t1 - 〈JH〉 ≥ t0} 

(ii)  The roots of det∆(λ) = 0 of (5.10) have negative real parts. 
 We now give a concrete touch to the sequel by considering the particular system which has A, B, 
C, B as constant matrices of appropriate dimensions. 
Consider the system 
     x& (t)  = Ax(t) + Bx(t – h) + Cu(t) + Du(t – h)  (6.3) 
This system shares much in common with the system studied by Gahi [4]  
  x& (t)  = A(t)x(t) + B(t)x(t-w(t)) + C(t)u(t) + D(t)u(t-h(t)) + g(t)   (6.4) 
for t∈J and x(t) = q(t) for t∈I-w(0), 0], Gahl [3] obtained for system (6.4)  that if C(t) = C a constant 
matrix, h(t1) > 0 and w(t1) > 0 then the system will be completely controllable on J if rank 
    [C, A(t1)C] = n       (6.5) 
The application of this result to system (6.3) is immediate.  For the system to be relatively controllable on 
the interval [t0, t1]; t1 > t0, rank[C, AC] = n we now obtain the form of the unique absolutely continuous 
solution of the system (6.3) satisfying the condition  

0t
x  = φ 

This is given by  

x(t) = X(t1,t0)φ + ( )∫ −
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The controllability grammian is given by  
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     + ∫
t

ht

X (t1, s)c(s)c(s)TX(t1, s)Tds    (6.7) 

and the null controllability grammian is given by  

( )∫ −Γ ht

t
stxtt 1

0
10 ),([, C(s) + X(t1, s + h)D(s + h)][x(t, s) C(s) + X(t1,s + h)D(s + h)]Tds. (6.8) 

Theorems 5.7, 5.8, 5.9 are applicable to system (6.3).   
6.1 Examples 
 In order to shed more light on our articulations, let us consider the following examples  
Example 1 
  ( )tx&  = Ax(t) + Bx(t – h) + Cu(t) + du(t – h)    (6.9) 
where  
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This establishes the relative controllability of the system. 
 We now show that the zero solution of the free part of the system is uniformly asymptotically 
stable.  Let us first obtain  
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  (6.10) 

   ( ) 063det 2 =−++=∆ − λλλλλ he  

Comparing this result with the equation λ2 + bλ + qλe-hλ + k = 0 which according to Driver, [2] in pg.  32 
example 3 will have negative real parts for its roots if b > q, b > 0, q > 0. 
 In the light of this, we conclude that the roots of the characteristic equation for the system (6.9 
have negative real parts since  
    b = 3, q =1, 3 > 1 3 > 0, 1 > 0. 
Hence the zero solution of the free part of system (6.9) is uniformly asymptotically stable. Hence we 
conclude that the system (6.9) is relatively null controllable with constraint.  
Example 2 
Consider the system  
 ( )tx&  = A0x(t) + A1x(t – 1) + A2x(t – 2) + B0u(t) + B1u(t – 2) + B2u(t – 2)  (6.11) 
 
where  
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This is the discrete autonomous system (4.13) with lag in both the state and control whose controllability 
has been settled previously we now show that the free part of the system is uniformly asymptotically 
sable. 
 The free part of the system is obtained when u = 0 i.e. 
 
    x(t) = A0x(t) + A1x(t – 1) + A2x(t-2) 
 
The solution of the system is uniformly asymptotically stable if x(t) → 0 as t →∞. 
This can happen if the roots of the characteristic equation of the free part have negative real parts. 
 
    Det[λ] – (A0 + A1e

-λ + A2e
-2λ] = 0 
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   λ2 + 5λ + λe-λ - 2λ - 10 – 2e-λ + 4 + 2e-λ = 0 
 
    λ2 + 3λ + λe-λ - 6 = 0 
 
Comparing this result, with the equation λ2 + bλ + qλe-λh + k = 0 whose roots will have negative real parts 
if b > q, b > 0, q > 0.  (See Driver [2] pp 32 example 3) 
 We conclude that the roots of the characteristic equation of the system 7.3 has negative real part – 
b = 1 q = 1 3 > 1, 3 > 0, q > 0.  Hence the zero solution of the free part is therefore uniformly 
asymptotically stable. 
 Taking together, the relative controllability of the system and the uniform asymptotic stability of 
its free part, we conclude in the light of theorem (5.9) that system (6.10) is relatively null controllable 
with constraint. 
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