Effect of radiation on the critical Frank – Kamenetskii parameter of thermal ignition in a combustible gas containing fuel droplets.

R.O. Ayeni, A.M. Okedoye, A.O. Popoola and T.O. Ayodele Department of Pure and Applied Mathematics Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

Abstract

We investigate the effect radiation on the critical Frank-Kamenetskii parameter of thermal ignition in a combustible gas containing fuel droplets (furnaces, gas turbines and internal combustion engines). Previous works show that radiation delays ignition in a well stirred reactor. In this paper we show that, even in a non-homogeneous reaction, the critical Frank-Kemenetskii parameter increases as the radiation parameter increases when the activation energy is high. This confirms the experimented observation in diesel engines.

pp 216 - 220

1.0 Introduction

The problem of thermal explosion in a combustible gas mixture containing fuel droplets has applications in furnaces, gas turbines and internal combustion engine [5]. The development of equations governing combustion involved derivation of the equations of motion of a chemically reacting gaseous mixture and a judicious simplification to render them tractable while retaining their essential characteristics [2]. Some of the models assume that the reactor is well – stirred so that the only independent variable is time [4, 5]. Even with this assumption the resulting equations are non-linear and usually analytical solutions do not exist. One may then use asymptotic technique [3, 4, 5, and 6] while one bears in mind that each technique may have advantages and disadvantages.

In the present work we model a non-homogeneous reactor where the independent variables are time and a space variable. As it is the case in many combustion problems, we assume that the activation energy is large.

2.0 Mathematical Modelling

Extending the model in [4] to a situation where the reactor is not well-stirred, we obtain

$$\rho_g c_{pg} \alpha_g \frac{\partial T_g}{\partial t} = \lambda_g \frac{\partial^2 T_g}{\partial x^2} + c_f Q_f \alpha_g \mu_f A \exp \left(-\frac{E}{R}T_g\right)$$

$$-4\pi R_d \lambda_g n_d (T_g - T_0) - 4\pi R_d^2 \sigma_1 n_d (T_g^4 - T_0^4)$$

$$d(R_1^2) = 2\lambda_g (q_1 - q_2) - 4\pi R_d q (q_2 - q_3)$$
(2.1)

$$\frac{d(R_d^2)}{dt} = -\frac{2\lambda_g}{\rho L} \left(T_g - T_0 \right) - \frac{4\pi R_d}{L\rho} \sigma_1 \left(T_g^4 - T_0^4 \right)$$
(2.2)

$$\alpha_{g} \frac{\partial c_{f}}{\partial t} = D_{f} \frac{\partial^{2} c_{f}}{\partial x^{2}} - c_{f} \alpha_{g} \mu_{f} \operatorname{Aexp} - \left(\frac{E}{R} T_{g}\right) + \frac{4\pi R_{d} \lambda_{g} n_{d} \left(T_{g} - T_{0}\right)}{L \mu_{g} \alpha_{g}} + \frac{4\pi R_{d}^{2} \sigma_{1} n_{d} \left(T_{g}^{4} - T_{0}^{4}\right)}{L \mu_{g} \alpha_{g}}$$
(2.3)

together with the initial and boundary conditions

$$T_g = T, \quad c_f = c_{fo} , R_d = R_{do}$$

$$\tag{2.4}$$

$$T_g = T_0, \quad c_f = c_{fi} at \ x = \pm 1, \ i = 1, 2$$
 (2.5)

Here, as in [4],

T – Temperature,

E - activation energy,

L – liquid evaporation energy,

C – reactant

 R_d – radius of drops,

Q – heat release per unit mass, $\sigma_1 = 2\sigma \varepsilon_d / (2 - \varepsilon_d)$.

$$\sigma_1 = 2\sigma \varepsilon_d / (2 - \varepsilon_d)$$

 σ is the Stefan–Boltzman constant.

 \mathcal{E}_d is the emissivity of the droplet's surface,

 μ - molar mass,

 ρ - density,

- α volumetric phase constant,
- λ thermal conductivity,
- n number of drops per unit volume
- A pre-exponential factor,

R – universal gas constant.

Subscripts: g - gas mixture,

L – liquid

f – combustible gas component of the mixture

d – liquid drops.

Method of solution. 3.0

We assume, as it is usually the case [1], that before ignition $c_f \approx c_{fo}$ and $R_d \approx R_{do}$. We solve the steady problem in (2.1). Let

$$\theta = \left(T_g - T_0\right) \frac{E}{RT_0^2}, \in = \frac{RT_0}{E}.$$

Then the steady part of (2.1) becomes

$$\frac{d^2\theta}{dx^2} + \delta \exp\left(\frac{\theta}{1+\epsilon \theta}\right) - a\theta - b\left(\epsilon \epsilon \theta^2 + 4\epsilon^2 \theta^3 + \epsilon^3 \theta^4\right)$$
(3.1)

together with the boundary conditions

$$\theta(-1) = \theta(1) = 0, \qquad (3.2)$$

where

$$\delta = \frac{RT_0^2 c_f Q_f \alpha_g \mu_g}{\left(\lambda_g \exp\left(\frac{E}{RT_0}\right)E\right)}$$
(3.3)

is the so called Frank-Kamenetskii parameter,

$$a = 4\pi R_d n_d + 4\pi R_d^2 \sigma_1 n_d \frac{T_0^3}{\lambda_g}$$
(3.4)

is the radiation parameter and

$$b = 4\pi R_d^2 \sigma_1 n_d \frac{T_0^3}{\lambda_g}$$
(3.5)

is the higher order radiation parameter. In a high activation energy situation $\in \rightarrow 0$ and equation (3.1) becomes

$$\frac{d^2\theta}{dx^2} + \delta \exp(\theta) - a\theta = 0$$
(3.6)

We are to solve equation (3.6) using equation (3.2).

Following [1], we seek an approximate polynomial solution

$$V(x) = c_1 (x + 1)^2 (x - 1) + c_2 (x + 1) (x - 1)^2$$
which satisfies the boundary conditions.
(3.7)

Thus

$$\frac{d^2V}{dx^2} + \delta \exp V - aV = R \quad (x) \tag{3.8}$$

By symmetry

$$\frac{d\theta}{dx} (0) = 0.$$

Thus

$$c_1 = -c_1.$$

 $V(0) = V \text{ max and } \frac{d^2 V}{dx^2} = 4c_1^{-1}.$

Thus

 $-2 V \max + \delta \exp(V \max) - aV \max = R(0)$ The critical Frank–Kamenetskii δ_{cr} occurs, when (3.9)

$$\frac{d\delta}{dV_{\rm max}} = 0.$$

Hence

$$\delta_{cr} = \frac{(a+2)}{e} \tag{3.10}$$

4.0 **Conclusion**

Equation (3.10) implies that the radiation parameter increases the critical Frank-Kamenetskii parameter.

Reference

- [1] R.O. Ayeni, A.M. Okedoye, F.O. Balogun and F.I. Alao (2004) A new proof of multiple solutions of combustion problems, to appear.
- [2] J.D. Buckmaster and G.S.S. Ludford (1982) Theory of Laminar Flames, Cambridge University Press, Cambridge.
- [3] A.C. McIntosh, V. Gol'dshtein, I Goldfarb and A. Zinoview (1998) Thermal explosion in a combustion gas containing fuel droplets. Combustion Theory and Modelling Vol. 2 pp 153 165.
- [4] I. Goldfarb, S. Sazhin and A. Zinoview (2004) Thermal explosion in flammable gas containing fuel droplets. Asymptotic analysis. 5th Minsk International Heat and Mass transfer Forum, Belarus.
- [5] I. Goldfarb, V. Gol'dshtein, G. Kuzmenko and S. Sazshin (2004) Radiation effect on thermal explosion in combustible gas containing fuel droplets.http://www.iwr.uni-heidelberg.de/~icders99/program.hmt.
- [6] S.S. Sazhin, G. Feng, M.R. Heikal, I. Goldfarb V. Gol'dshtein and G. Kuzmenko (2001) Thermal ignition analysis of a monodisperse spray with radiation. Combustion and Flame 124, pp 684 701.

Journal of Nigerian Association of Mathematical Physics, Volume 9 (November 2005)