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Abstract

In this paper, we employ a generalization of Lindsted-Poincare technique to
determine the dynamic buckling load of a lightly and viscously damped elastic
cubic model structure modulated by a sinusoidally slowly varying dynamic load.
The imperfect elastic cubic (nonlinear) structure is itself a generalization of
most elastic physical structures that have been investigated over the years. The
formulation contains two small but mathematically unrelated parameters upon
which asymptotic expansions are initiated. The dynamic buckling load is
obtained asymptotically and is related to the result corresponding to that of the
static loading. This process by-passes the labour of repeating the entire process
for different imperfection parameters.

pp 187 - 198

1.0 Introduction

The exposition contained here is aimed at finding a stratbfytical solution to the problem of
determining the dynamic buckling load of an imperfect elastlsic model structure modulated by an
explicitly time dependent sinusoidal load. It is strictly a moadir oscillatory and dissipative dynamical
system where the effects of a small viscous damping esfigated using a generalization of Lindsted—
Poincare procedure in a regular perturbation analysis. In otbetsvithe ensuing coefficients in the
equations characterizing the dynamic equilibrium of the strudteceme sinusoidally and dynamically
slowly varying. Our objective is to determine the dynamic bughkoad of the imperfect structure under
the instance of the prescribed slowly varying load.
We remark that strictly nonlinear dynamical problems with Blowarying parameters were first
investigated by Kuzmak [1]. Later, Luke [2] , in his work n nosdinnearly periodic waves, extended it
to higher orders. In some other application of slowly varyingupaters in nonlinear dynamical systems
Collinge and Ockendon [3] discussed the case of transition througiares of a Duffing oscillator. We
however remark that relatively recent analyses of nonliosaillatory and dynamical systems with
slowly varying coefficients have been primarily discussedhenplatform of Physics (not Mathematics)
in connection with waves, rigid bodies, charged particles etc. lofosiech investigations, Kevorkian [4]
used this technique to study free-electron lasers — a purdlyeMatical problem dealing with general
strictly nonlinear oscillations whose earlier studies wastly Quantum Mechanical [5] .Later Li [6]
used the same technique to investigate free-electron las#rsvariable parameters while Li and
Kevorkian [7] similarly studied the effects of wigglepéa rate and signal field gain rate in free electron
lasers.

2.0 Formulation

The elastic cubic model structure which we are about to igaéstwas originally investigated
by Budiansky and Hutchinson [8-10]. They considered a two-armed sioqmbpded column (Figure
1), subjected to a time dependent load F(T) applied at time T The structure is assumed weightless
and carries a mass M at the center .The motion of M is restrained byireeaonl
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Figure 1. Simple elastic “cubic” model
“softening” spring which provides a restoring force given by

KL (x -0 x3)
whereK >0, >0 and L is the length of the column while x is the central hiigplacement from

the equilibrium position. In a major refinement of the works H1(8 we shall introduce a light viscous
damping taken proportional to the first degree of the velocitie shall assume small angular
displacement characterized leps¢ = 1,Sing = ¢ . Using these assumptions the governing equation of
dynamic equilibrium of the structure becomes
2
M ﬂ+Q%+(1— ZF(T)
dr2 " dT KL?

where Q is the damping constant axé the initial displacement which serves as the initrgdarfection
. We shall now introduce the following nondimensional quantities:

]X—KL,BX3:2)_(FT(T), T>0 2.1)

X = X =2 KL 2F (0) Q
=— ,&=—t=T A= ,O= )
4L \'M KL2 JKLM (2.22)
_F(r) _ '
f(Dt)— F(0) = cos[t
(FO#0.b=A2 (2.2b)

where 0 <[J<< 1,0 < & << 1and0 < A < 1.However the analysis is generally valid ‘6_'11 <<1.Here

A is a load amplitude whose particular value at buckling wet@metermine. We easily note that
Oandé& are two small but Mathematically unrelated parameters argl thei imperfection-sensitivity

parameter which is such that fok 0, the structure is said to be imperfection—insensitive eelsdiorb >
0,the structure is said to be imperfection - sensitive. Ugrp,b), the nondimensional form of (2.1)
together with the initial conditions becomes

$+D5+(1—/1005Df)£-b53:Afcost,f>O (2.3a)
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where

d() _ (g (2.3b)

The undamped and step loading cds&= 0) was investigated in [8-10] .It is however our

considered opinion that most buckling phenomena are in some way affectechéyelement of damping
which is usually not taken into account in most buckling consideimti The problem in (2.3a,b)
becomes a two-small parameter non-autonomous one with harmonically andailyaslowly varying
coefficients. We remark that problems with sinusoidal coeffiis are, at the best of times, solved using
Mathieu-type of instability. However as noted by Budiansky [8, d&§8, Mathieu-type of instability is
usually associated with many cycles of oscillations as oppms@gst one cycle of oscillation that is
usually associated with dynamic buckling. This has thus nesteskthe need for an alternative approach
which has resulted in the method of generalization of Lindsted—Poinchregee.

The simple elastic cubic model structure characterized by (2.8ab)a lot of practical
applications in Science and Engineering . It is infact a ghratian of equations satisfied by most
physical systems under various dynamic loading histories. Sutdnsyinclude (a) a finite (or infinite)
imperfect column lying on elastic cubic ( or quadratic-cubicutric-quatic) nonlinear foundations, (b) a
finite (or infinite) imperfect cylindrical shell trapped layy dynamic load and (c) an imperfect toroidal
shell segment under any dynamic loading history, among others. Theustrsatisfying equation (2.3a)
is said to be cubic because of the cubic nonlinearity inigptadement. Relevant literatures include Zhu
et al [11], Heinen and Bullesbach [12] , Schenk and SchuelleafiBEtte [14-16] .Henceforth we shall
,without loss of generality ,sdi = 1.

3.0 The associated static problem
In this case we séfi= 0 and also ignore the inertia term in (3a).The resultant equation is

(1-2)f-&=A¢F. (3.1a)
If the structure were perfect thén= 0 and the associated classical buckling lddtakes the valuel;

=1. For the imperfect structure we ha§et 0and following [8-10], the condition for obtaining the static
3 -
2 3J3|&] A
2

buckling load g is 2—; = 0. This gives (L-4g)° = (3.1b)
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Figure 2: Load-deflection curves of a cubic modetructure
In (Figure 2a,b) we see the schematic plots of the vatwac deflections for various ranges of the
imperfection parametédr.

4.0 The dynamic cases
The undamped structure under step loading consideration satisfies ttierequa

5+@—Ak—§3:AE (4.1a)

£(0)=¢(0) (4.1b)
The dynamic buckling load for this case was investigated by Budiaarsd Hutchinson [8-10], using
phase-plane analysis. The dynamic buckling Idgdin this autonomous case satisfies the equation

(1-1p)° =
While the phase-plane method was readily available and suffizieanalyzing the autonomous case
(4.1a,b) , the same cannot be said of the non-autonomous case in (2.3a,b) which weeeaddithus
$+D5+(1—/1005Df)£—£3:/k?cost (4.33)
£(0)=¢(0)=0 (4.3b)
In the analysis that follows, we shall first determine afommly valid asymptotic value of the
displacement variablef(f).We shall next determine the maximdg of E(f).LastIy we shall

3 _
2 _ 36l (4.2)
2

A
determine the dynamic buckling loadp from the maximization [8-10](;17 =0. We define the
a

dynamic buckling loadlp as the largest load parameter for which the solution gbriilem (4.3a,b)

remains bounded for all timie > 0. We shall now let
1

= 5 2., 73
%:(1—/1005Df)2,T=DAt,t=f+(w2£ —ut ] (4.42)
o =a(r),i=2,34;;0(0)=0,t=0fort =t=0 (4.4b)
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1

Thus we have % =(1-4 COSZ')2 f,t+(aizg?2 + ahES +---)5,t+ O¢&,; (4.5a)

2
% =(1-4 cosr)f,tt+(a}2§2 + k&> +...)zf,tt+ P &pp

=

+2(1-A cosr)E (aizg?z + k&> +...)g,tr+2 0 (ajzfz + k& +...)g'tr (4.5b)
1 1
+20 (1—Acosr)2£,tr+

O(Asinr)(1- Acosr) Eq‘,t N
2

We shall now let E(f):E(t,r,D,g?): iifij (t,r)E' ol (4.6)

i=1j=0

(6822 + g3+ ),

where thdj in Eij (t,r) are superscripts and not powers. On substituting (4.6) into (4.3a,b), using)(4.5a
and equating the coefficients 51’ Dj Jd=123---;] = 01,23:--we get the following sequence of

Acosr
equations NeO= g0 4 g0 2222 = p(r 4.7a
auat ¢ G ré 1-Acosr ( ) (.73
1 L
Nt = ~(1- Acosr) 2 E}O -2(1- Acosr) 2 E%?
3
_ (Asin7)(1-Acosr) 2 &P @.7b)
> :
1 -1
N&L2 = ~(1- Acosr) 2 E}l— 2(1- Acosr) 2 E%}
3 (4.7¢)
. 2 11
Asint)(1- Acosr -
( ) d ) “& — (1~ A cosr ) 1410
NE20 =0 (4.8a)
1 L
N &2t = —(1- Acost) 2{%0—2(1—/1 cosr) 2{%?
3 (4.8b)
_ (Asin7)(1-Acost) 2 20

2
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1 1
N 22 = ~(1- Acosr) 25’%1—2(1—/]cosr) ZE%}

3 (4.8¢c)
. 2
_ (A Slnl')(l— /12COST) E’ ( /1 COST) 1 20
1
N&30 = —(1- A cosr)” (510)3 2(1- A cost) ° WhEY (4.9a)

1
NE3L = —3(1— A cost)” (510)2511 2(1- Acost) ° ahélt
1

30
—2(1- Acost) ehet? - 2(1- A cosr) 5‘?9 (Asin7)L- /]ZCOST) i (4.9b)

L
-(@1-2 cosr)_laizqﬂo - ah(1-A cosr)_lqﬂo ~(1- Acosr) 2 Ef’o

The associated initial conditions are Eij (0,0) =00, (4.10a)
1
&29(00) = 0; &%(00) + (1- 1) * EP(00)=0; p=k -1, k=1,2,3; (4.10b)
1
£2%(00) = 0:£7%(00) + (1-4) * £2P(00) = 0; p =kl k=1,2,3;- (4.10c)
1
£9(00)+ (1-1)  wh(0)1%(00) = 0 (4.10d)
1 1
£4(00)+(1-1) 2ah(0)(00) =(-4) 2 &P(00)=0;  (4.100)
p=kil, k=123,
We now solve (4.7a), using (4.10a) and the first of (4.10b) to get
flo(t, 7) = & (r)cost +by(r)sint + B (4.11a)
A
a(0)=-By, By = 7 by(0) =0 (4.11b)

We now substitute (4.11a,b) into (4.11b) and to ensure a uniformly s@llidion, equate to zero the
coefficients of cost angint and get respectively
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1 Asint 1 Asinr
|1 =0,y +=|1+—F———|3y=0 (4.12a
i 2{ 2(1—)lcosr)}b1 1 2{ 2(1—Acosr)} 170 (4129)
1.
>~

The integrating factor for each of (4.12aX13— A COST) e2 and so the solutions of (4.12a) together
with (4.11b) are

=
=

T T

2 2

by(r) = by(0)e 2(L-Acost) % = 0, a(r) = a(0)e 2(1-Acostr) (4.12b)

We can now write &0 = a(r)cost +B (4.12c)

The remaining equations in (4.7b) are N{ll =0 (4.13a)

1

&%00) = 0.600)+(1-1) *£X(00)=0 (4.13b)

The solution of (4.13ab)is &1 = ay(r)cost +by,(r)sint (4.14a)
1

2,(0)= 0, b,(0) = —%(1—/1) 2 (4.14b)

where we have used the fact that  aj(0) = % ,B(0)=0 (4.14c)

We now substitute into (4.7c) and equate to zero the coefficientstarmsn t and get respectively

b'2+1 1+ Asint Zz—z;a'2+1 1+ Asint a, =0 (4.152)
2|" 2(1-Acost) 2 2|" 2(1-Acost)
The solutions of (4.15a), using (14.4b), are
1 1 S :
B 2 Tale2(1-Acoss)’ ds
by(r)=(1-Acosr) “e 2|by(0)1-A) —I 5 (4.15b)
0
We thus conclude that {11(t, r) = by(r)sint (4.15c¢)
The remaining equation in (4.14c) is solved to get
&2 = ag(r)cost +bg(r)sint - B"(1- Acosr)t (4.16a)
az(0)=-(1-1)"B"(0), b3(0)=0. @.16h
The solutions of (4.8a-c) yield 52j (t,r) =0,j=0,1,2,3;-- (4.17)
On substituting into (4.9a) and simplifying we get
3 2 3
N{3O = (1— A cosz')_l 4 C:)S3t + 33 BZCOSZt + (36\182 + %J cost + 83}
(4.18a)

+2ah(1- Acosr) © ajcost

N~
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L

£%00)=0 ; &%00)+@-1) *wh(0)ei(00) =0 (4.18b)
To ensure a uniformly valid solution, we equate to zero in (4.18a) thecometfof cost and get

EPR T
6r) = ~3lL- A cosr) 2(32%],@(0):-1550(1;)
(4.18¢)
L
(o) _3880-1) °
(0)= -2
The remaining equation in (4.18a) is solved to get
&30 = ay(r)cost +by(r)sint
3 2 (4.19a)
+(1-Acost) Y - ay cos3t _ afBcos2t +(§a128 N ng
32 2 2
6585(1- )71
a,(0)= —% , by(0)=0 (4.19b)
We next substitute the relevant terms into (4.9b) and re-arrange to get
Ng3L = A 1Sin3t + A psin2t + Ajzsint + A 4cost (4.20a)
1 1

£500)= 0,300)+ (1-1) 2a(0)ét00)+(1-1) ZeR(00)=0 (4200

1
2 A r
where A =3(1-4 cosr)_lbzfa1 - %(1— Acosr) {af’ (1-4 cosr)_l}
5 3 (4.20c)
_3ad(Asinz)(1- A cost) : _ 3ad(1- Acosr) 2
64 32
1
A, = 3(1-Acost) Bbya — 2(1- Acosr) 2 {a12 (1-2 cosr)_l}
5 , (4.20d)
2 . _ 2 -
_ By ()l smr)% A cosr) : Balz(l— p cosr) 2
) 1
_ 4y [ w28 | o 20
Ay3=3(1- Acosr) bZ[B = J 2(1-Acosr) “{ah(b, +a])+ay (4.200)

, (Asinz)1-Acosr

. ) + %} +(1- Acost) Habay + abay)
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(Asin7)(1- Acosr)

1

b _ 2(1- Acost) “by—(1-Acost) “by (4.20f)

N W

N~

Ag=- >
To ensure a uniformly valid solution, we set#A;,=0 and get
V] Asinr B
+—|1+—F—— |=hlr 4.21a
4T ( 2(1-Acosr)j ) (4.212)
1
2 (L- Acosr) 2 > af
nlr) = - +ai)- ST (ap gy v 874 || (a2t
1
' 5380 2
0)= +0(1-4 4.21c
a(0) = gy +OlL=) (4.210)
oy + 2[4 ASINT_ )y (4.21d)
2" 2(1-Acosr)
The solutions of (4.21a-d) subject to (4. 19b) are
1 7 1 s
22|, 2 ° 1262
ay(r)=(@1-Acosr) “e j 1- Acosr) h(s)ds |, by(r) =0 (4.22a)
0
We shall use the following later
1
30 , 61(1—/1)_150 _5 Bg
00)=ay(0)—-—————=+0(1- 4 4.23
(00)=a(0)- B voi-) T2 By a2
The remaining equation in (4.20a) is solved to get
£34t,7) = as(r)cost + bs(r) - ’*112'“3‘ - ’*12;'”3 (4.242)
a5(0)= 0, bg(0)#0 (424b)
We shall not need expressed determinatiot)gé@). Thus the summary so far is
E(t, r) = 3({10+ O 511)+ 33({30+ O 531)+ O(g? D2)+ 0(33 DZ) (4.25
We shall now determine the maximum displacemfgand the condition for this is
- .
&y +(1-Acost) [afzf Eqt f,T] =0 (4.26)

We shall lett,, t,,t; and 7, be the critical values df,t ,t and 7 respectively at maximum point and

now assume the following asymptotic series.
£, = g+ Ofgy + E2(fp0+ Opy)+ - (4.27a)
ty = fo+ OTgy + &2(Bo+t Ofpy)+--- (4.27b)
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ta = to+ Otgg + & *(too* Otpg) + -+ (4.27¢)
T, =0ty =0 {t0+ Dt01+§?2(t20+Dt21)+~-~} (4.27d)
We now substitute (4.27a-d) into (4.26), using (4.25) and equate to zerooédfigcients of
Eoli=123,j=0,1,2,3;- . From the coefficients of ,& 0 and &2 we get respectively
%00 =0, toxéit + &t +tofte = 0
1 (4.28a,b,c)
T2
toofi + €0 +(L-1) 2abél®=0
From (4.27a) we get, using (4.12fintg = 0; to =nm7,n=0,1,2,3;-

Since we need the least nontrivial valué¢,afe setn = 1 and obtairty = 77 (4.29a)
11 =
t
From (4.28b) we get to1 = —W =-(1-4) 2 (4.29b)
&it (to.0)
From (4.28c) we get too=0 (4.29c¢)

To arrive at all these values we note thgt(ify,75) is an arbitrary function of the indicated arguments,
then it has the following Taylor series expansion

W(ta7a) = @(to O+ O (togra +ow.r ) + & [togp i + D{to gy +oo o
+ % (toctow tt +2toctol 7 )H +ee

where (4.29d) is evaluated a(to,O).We shall now determine the maximum displacemégt of
(4.25),using (4.27a-d) to get

(4.29d)

o = lara) = 4% 0l o)

+& 3[5 040 {5 1830+ toof i +toof P+ + ot }] (4.30a)
rolf 2)role® ?)
where (4.30a) is evaluated &,0).It is obvious that most of the terms in (4.30a) vanish on evaluation
and so the eventual simplification of (4.30a) yields &, = &C; +&Cy (4.30b)
3
] 4By S7mry
where =2By|1+—| ,C3= 1- 4.30c
ClBO( 4] 31—/1{ 32} (4.300)
According to [8-10], the criterion for dynamic buckling is % =0 (4.31)
a
As in [14-16], we first have to reverse the series (4.30b,c) in the form
§=eafatexyt (4.32a)
By substituting fo€, in (37a) from (35b,c) and equating the coefficientslofind 0°, we get
1
@ =—,8= _% (4.32b)
G Ci
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The maximization (4.31) is now easily accomplished through (4.32a,b) to yield
= 2

3C3
On substituting for Cand G in (4.33a) from (4.30c), we get

3/6

(1‘/10)2 =

(4.331

5.0 Analysis of result
The result (4.33b) is asymptotic in nature and is valid follsralues of bothé and[d. The

terms multiplyingl! in (4.33b) clearly show the contributions to dynamic buckling of dagapf [J= 0
(that is no damping), then from (4.33b) we have

3 3/6/&A
1-4p)2 :—‘j -

which is the same result already obtained in (4.2) for steprigaiuation obtained using phase - plane
analysis. This method also clearly shows the supremacy of tieealjieed Lindsted-Poincare asymptotic
method (which we have adopted) over Phase-plane method becauappticable to both autonomous

and non — autonomous systems. In an approximate way, we can determine the dynamic butkligg loa
directly by taking the first three terms in the Binomial expansion dofigie hand side of (4.35b) to get

l;’/l% —AD[?s+gj+1= 0 (5.2a)

(5.1)

36| 1=,

S= (5.2b)

2 1+77%1

o 4( = 3 3
This gives Ap = g[&‘ +§j 1- 1——2 (5.3)
=, 3
2 S+
( 2) ]
where we have taken the negative root sign ; the posttesign having no physical significance. To
the level of approximation retained in (5.3) we easily obsémae the dynamic buckling load Ap

decreases with increased damping and increases with decdsaspohg for bothé <0 and & >0
.However the decrease in the valueA§ is more in the rangé <0 than in the rangef >0 for the
same damping parameter We easily eliminate the imperfection param&dn (4.35b) using (3.2b) to

3 57
_ > 1-
get (ﬂjz - ﬁ(”—Dj “32 (5.4)

1- Aq As || 1+ N%
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Thus, by using (5.4), we avoid the labour of repeating the entireegs for different imperfection
parameterst.
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