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 Abstract 
   

In this paper, we employ a generalization of Lindsted-Poincare technique to 
determine the dynamic buckling load of a lightly and viscously damped elastic 
cubic model structure modulated by a sinusoidally slowly varying dynamic load. 
The imperfect elastic cubic (nonlinear) structure is itself a generalization of 
most elastic physical structures that have been investigated over the years. The 
formulation contains two small but mathematically unrelated parameters upon 
which asymptotic expansions are initiated. The dynamic buckling load is 
obtained asymptotically and is related to the result corresponding to that of the 
static loading. This process by-passes the labour of repeating the entire process 
for different imperfection parameters. 
 
pp 187 - 198 
 

1.0 Introduction  
 The exposition contained here is aimed at finding a strictly analytical solution to the problem of 
determining the dynamic buckling load of an imperfect elastic cubic model structure modulated by an 
explicitly time dependent sinusoidal load. It is strictly a nonlinear oscillatory and dissipative dynamical 
system where the effects of a small viscous damping is investigated using a generalization of Lindsted–
Poincare procedure in a regular perturbation analysis. In other words the ensuing coefficients in the 
equations characterizing the dynamic equilibrium of the structure become sinusoidally and dynamically 
slowly varying.  Our objective is to determine the dynamic buckling load of the imperfect structure under 
the instance of the prescribed slowly varying load.  
We remark that strictly nonlinear dynamical problems with slowly varying parameters were first 
investigated by Kuzmak [1]. Later, Luke [2] , in his work n nonlinear nearly periodic waves, extended it 
to higher orders. In some other application of slowly varying parameters in nonlinear dynamical systems 
Collinge and Ockendon [3] discussed the case of transition through resonance of a Duffing oscillator. We 
however remark that relatively recent analyses of nonlinear oscillatory and dynamical systems with 
slowly varying coefficients have been primarily discussed on the platform of Physics (not Mathematics) 
in connection with waves, rigid bodies, charged particles etc. In one of such investigations, Kevorkian [4] 
used this technique to study free-electron lasers – a purely Mathematical problem dealing with general 
strictly nonlinear oscillations whose earlier studies were mostly Quantum Mechanical [5] .Later Li [6] 
used the same technique to investigate free-electron lasers with variable parameters while Li and 
Kevorkian [7] similarly studied the effects of wiggler taper rate and signal field gain rate in free electron 
lasers. 
 
2.0 Formulation  
 The elastic cubic model structure which we are about to investigate was originally investigated 
by Budiansky and Hutchinson [8-10].  They considered a two-armed simply-supported column (Figure 
1), subjected to a time dependent load F(T) applied at time T = 0 . The structure is assumed weightless 
and carries a mass M at the center .The motion of M is restrained by a nonlinear  
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Figure 1:  Simple elastic “cubic” model
“softening” spring which provides a restoring force given by  

      ( )    x-xKL 3β  

0, 0K where >> β  and L is the length of the column while x is the central hinge displacement from 
the equilibrium position. In a major refinement of the works in [8-10] we shall introduce a light viscous 
damping taken proportional to the first degree of the velocity.  We shall assume small angular 
displacement characterized by φφφ ≈≈ sin , 1cos . Using these assumptions the governing equation of 
dynamic equilibrium of the structure becomes 
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where Q is the damping constant and x is the initial displacement which serves as the initial imperfection 
. We shall now introduce the following nondimensional quantities: 
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     ( ) 2Lb , 0)0( β=≠F    (2.2b) 

where . 10 and 10 , 10 <<<<<<∈<< λξ However the analysis is generally valid for 1<<ξ  . Here 

λ  is a load amplitude whose particular value at buckling we are to determine.  We easily note that 

ξ and ∈ are two small but Mathematically unrelated parameters and b is the imperfection-sensitivity 
parameter which is such that for b < 0, the structure is said to be imperfection–insensitive whereas for b > 
0,the structure is said to be imperfection - sensitive. Using (2.2a,b), the nondimensional form of (2.1) 
together with the initial conditions becomes  

( ) 0t̂ , ˆcosb- ˆcos1 3 >∈=∈−+∈+ tt ξλξξλξξ &&&    (2.3a) 
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 The undamped and step loading case )0(∈= was investigated in [8-10] .It is however our 
considered opinion that most buckling phenomena are in some way affected by some element of damping 
which is usually not taken into account in most buckling considerations . The problem in (2.3a,b) 
becomes a two-small parameter non-autonomous one with harmonically and dynamically slowly varying 
coefficients. We remark that problems with sinusoidal coefficients are, at the best of times, solved using 
Mathieu-type of instability. However as noted by Budiansky [8, page 100], Mathieu-type of instability is 
usually associated with many cycles of oscillations as opposed to just one cycle of oscillation that is 
usually associated with dynamic buckling.  This has thus necessitated the need for an alternative approach 
which has resulted in the method of generalization of Lindsted–Poincare technique. 
 The simple elastic cubic model structure characterized by (2.3a,b) has a lot of practical 
applications in Science and Engineering . It is infact a generalization of equations satisfied by most 
physical systems under various dynamic loading histories. Such systems include (a) a finite (or infinite)  
imperfect column lying on  elastic cubic ( or quadratic-cubic or cubic-quatic) nonlinear foundations, (b) a 
finite (or infinite) imperfect cylindrical shell trapped by any dynamic load and  (c) an imperfect toroidal 
shell segment under any dynamic loading history, among others. The structure satisfying equation (2.3a) 
is said to be cubic because of the cubic nonlinearity in the displacement. Relevant literatures include Zhu 
et al [11], Heinen and Bullesbach [12] , Schenk and Schueller [13] and Ette [14-16] .Henceforth we shall 
,without loss of generality ,set  b = 1. 
 
3.0 The associated static problem 
In this case we set 0∈=  and also ignore the inertia term in (3a).The resultant equation is 

( ) ξλξξλ =−− 31 .       (3.1a) 

If the structure were perfect then 0=ξ  and the associated classical buckling load cλ  takes the value cλ
=1. For the imperfect structure we have 0≠ξ and following [8-10], the condition for obtaining the static 

buckling load sλ  is 0=
ξ
λ

d

d
. This gives  ( )
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Figure 2:  Load-deflection curves of a cubic model structure  
In (Figure 2a,b) we see the schematic plots of the various load deflections for various ranges of the 
imperfection parameter b.  
 
4.0 The dynamic cases  
 The undamped structure under step loading consideration satisfies the equation 

( ) ξλξξλξ =−−+ 31&& (4.1a) 

   ( ) ( )00 ξξ &=        (4.1b) 
The dynamic buckling load for this case was investigated by Budiansky and Hutchinson [8-10], using 
phase-plane analysis. The dynamic buckling load Dλ  in this autonomous case satisfies the equation 

   ( )
2

  63
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3
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λ =− D      (4.2) 

While the phase-plane method was readily available and sufficient in analyzing the autonomous case 
(4.1a,b) , the same cannot be said of the non-autonomous case in (2.3a,b) which we vividly recast thus 

( ) tt ˆcosˆcos1 3 ∈=−∈−+∈+ ξλξξλξξ &&&     (4.3a) 

( ) ( ) 000 == ξξ &        (4.3b) 
In the analysis that follows, we shall first determine a uniformly valid asymptotic value of the 

displacement variable ( ). t̂ξ We shall next determine the maximum   of  aξ ( ). t̂ξ Lastly we shall 

determine the dynamic buckling load Dλ  from the maximization [8-10] 0=
ad

d

ξ
λ

. We define the 

dynamic buckling load Dλ   as the largest load parameter for which the solution of the problem (4.3a,b) 

remains bounded for all time t̂  > 0.  We shall now let 
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  ( ) ( ) 0t̂t~for  0 t, 00 ;2,3,4,i, ====== iii ωτωω L   (4.4b) 
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We shall now let  ( ) ( ) ( )∑∑
∞

=

∞

=
∈=∈=

1 0

,,,,ˆ
i j

jiij ttt ξτξξτξξ    (4.6) 

where the ij in ( )τξ ,tij are superscripts and not powers.  On substituting (4.6) into (4.3a,b), using (4.5a,b) 

and equating the coefficients of LL ,3,2,1,0;,3,2,1, ==∈ jijiξ we get the following sequence of 
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The associated initial conditions are  ( ) i,j ij ∀= 00,0ξ   (4.10a) 
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We now solve (4.7a), using (4.10a) and the first of (4.10b) to get 

( ) ( ) ( ) Btbtat ++= sincos, 11
10 τττξ      (4.11a) 

 ( ) ( ) 00b  ;  
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We now substitute (4.11a,b) into (4.11b) and to ensure a uniformly valid solution, equate to zero the 
coefficients of cost and sint and get respectively 
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The integrating factor for each of (4.12a) is ( ) 22

1

cos1

τ

τλ e−  and so the solutions of (4.12a) together 
with (4.11b) are 
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We can now write  ( ) Bta += cos1
10 τξ       (4.12c) 

The remaining equations in (4.7b) are   011 =ξN     (4.13a) 
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The solution of (4.13a,b) is  ( ) ( ) tbta sincos 22
11 ττξ +=    (4.14a) 
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where we have used the fact that  ( ) ( ) 00B  , 
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We now substitute into (4.7c) and equate to zero the coefficients of cost and sin t and get respectively 
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The solutions of (4.15a), using (14.4b), are  
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We thus conclude that   ( ) ( ) tbt sin, 2
11 ττξ =      (4.15c) 

The remaining equation in (4.14c) is solved to get 
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The solutions of (4.8a-c) yield   ( ) L0,1,2,3,j , 0,2 ==τξ tj     (4.17) 
On substituting into (4.9a) and simplifying we get 
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To ensure a uniformly valid solution, we equate to zero in (4.18a) the coefficient of cost and get 
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The remaining equation in (4.18a) is solved to get 
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We next substitute the relevant terms into (4.9b) and re-arrange to get 
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To ensure a uniformly valid solution, we set A13=A14=0 and get 
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The solutions of (4.21a-d) subject to (4.19b) are 
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We shall use the following later  
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The remaining equation in (4.20a) is solved to get 
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We shall not need expressed determination of ( )05b . Thus the summary so far is 
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We shall now determine the maximum displacement aξ and the condition for this is 

( ) [ ] 0,,cos1 2
2

2

1

, =∈+′−+
−

τξξξωτλξ tt     (4.26) 

We shall let aaaa andttt τ     ,~,ˆ  be the critical values of τ  and  ,~,ˆ ttt  respectively at maximum point and 

now assume the following asymptotic series.  

  ( ) L+∈++∈+= 2120
2

010 ˆˆˆˆˆ ttttta ξ    (4.27a) 

    ( ) L+∈++∈+= 2120
2

010
~~~~~ ttttta ξ    (4.27b) 
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    ( ) L+∈++∈+= 2120
2

010 ttttta ξ   (4.27c) 

  ( ){ }L+∈++∈+=∈=∈ 2120
2

010 tttttaa ξτ   (4.27d) 

We now substitute (4.27a-d) into (4.26), using (4.25) and equate to zero the coefficients of 

LL 0,1,2,3,j ,,3,2,1, ==∈ ijiξ  .  From the coefficients of 2   and   , ξξξ ∈ we get respectively 
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,010
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−
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t
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ξωλξξ

ξξξξ τ
  (4.28a,b,c) 

From (4.27a) we get, using (4.12ff), L0,1,2,3,n ,    t;  0sin 00 === πnt  

Since we need the least nontrivial value of t0 we set n = 1 and obtain π=0t   (4.29a) 

From (4.28b) we get   
( )
( )

( ) 2

1

0
10
.

0
11
.

01 1
0,

0,
−

−−=−= λ
ξ
ξ

t

t
t

tt

t     (4.29b) 

From (4.28c) we get    020 =t      (4.29c) 

To arrive at all these values we note that if ),( aat τψ  is an arbitrary function of the indicated arguments, 

then it has the following Taylor series expansion 
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where (4.29d) is evaluated at ( ). 0,0t We shall now determine the maximum displacement aξ  of 

(4.25),using (4.27a-d) to get 
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  (4.30a) 

where (4.30a) is evaluated at ( t0,0).It is obvious that most of the terms in (4.30a) vanish on evaluation 

and so the eventual simplification of (4.30a) yields  3
3

1 CCa ξξξ +=   (4.30b) 
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3
0

301
π

λ
π B

BC   (4.30c) 

According to [8-10], the criterion for dynamic buckling is  0=
ad

d

ξ
λ

  (4.31) 

As in [14-16], we first have to reverse the series (4.30b,c) in the form  

    L++= aa ee ξξξ 31      (4.32a) 

By substituting for aξ  in (37a) from (35b,c) and equating the coefficients of 3   and   ∈∈ , we get 
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1
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1
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e −==       (4.32b) 
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The maximization (4.31) is now easily accomplished through (4.32a,b) to yield 

  
3

1

33

2

C

C=ξ       (4.33a) 

On substituting for C1 and C3 in (4.33a) from (4.30c), we get 

   ( )
4

1

32

57
1

2

  63
1

D
2

3

∈+

∈−
=− π

π
λξ

λD     (4.33b) 

 
5.0 Analysis of result 
 The result (4.33b) is asymptotic in nature and is valid for small values of both .  and  ∈ξ   The 

terms multiplying ∈  in (4.33b) clearly show the contributions to dynamic buckling of damping. If 0∈=  
(that is no damping), then from (4.33b) we have 

( )
2

 63
1

D
2

3 λξ
λ =− D       (5.1) 

which is the same result already obtained in (4.2) for step loading situation obtained using phase - plane 
analysis. This method also clearly shows the supremacy of the generalized Lindsted-Poincare asymptotic 
method (which we have adopted) over Phase-plane method because it is applicable to both autonomous 
and non – autonomous systems. In an approximate way, we can determine the dynamic buckling load Dλ  
directly by taking the first three terms in the Binomial expansion of the right hand side of (4.35b) to get  

  01
2

3

8
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This gives   
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where we have taken the negative  root sign ; the positive root sign having no physical significance. To 
the level of approximation retained in (5.3) we easily observe that the dynamic buckling load Dλ  

decreases with increased damping and increases with decreased damping for both 0   and   0 >< ξξ  

.However the decrease in the value of Dλ  is more in the range 0<ξ  than in the range 0>ξ  for the 

same damping parameter ∈ .  We easily eliminate the imperfection parameter ξ in (4.35b) using (3.2b) to 

get   
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Thus, by using (5.4), we avoid the labour of repeating the entire process for different imperfection 

parameters .ξ  
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