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 Abstract 
 

In this paper, the dynamic buckling load of an imperfect discretized 
spherical shell subjected to a slowly varying time dependent sinusoidal 
load is determined by means of regular perturbation The results which are 
given in two levels of approximation are valid for small amplitudes of the 
imperfection. All results are strictly asymptotic. It is found out among 
other things that the nonlinearity in antisymmetnc mode dominates the 
buckling process and that neglecting any imperfection automatically 
nullifies the effect of any nonlinearity in the shape of the imperfection 
neglected. It s additionally established that lbs effects of coupling of the 
buckling modes is possible only if none the imperfections in the shapes of 
the coupling modes is neglected. These results are of course valid for 
considerations at the immediate post-dynamic buckling consideration. 
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1.0 Introduction 

Investigations into the dynamic buckling of elastic structures have consistently received 
enormous patronage as evident from the vast literature on the subject available in the past thirty years. 
These include the pioneering works of Budiansky and Hutchinson [1-3], Svalbonas and Kalnins [4], 
Huyan and Simitses [5] Simitses [6,7] and Peg [8,9] among others The present study is therefore an 
extension of one of such works by Danielson [10] where he investigated the dynamic buckling of 
spherical shells under step load, 

Danielson [10] discretized the spherical shell by assuming that the normal displacement W of 
a point on the shell surface can be written as 
    221 )()()( WTWTWTW oo ξξξ ++=    (1.0) 

Where Wo is the pre-buckling symmetric mode while W1 and W2 are the axisymmetric and an 
arbitrary non-axisymmetric buckling modes respectively.  We note that each of W1, I = 0, 1, 2 is 
functionally dependent on spatial variables.  Similarly ξi(T), i = 0, 1, 2 are the respective time 

dependent amplitudes.  To study the effects of imperfection W , Danielson assumed the following 

    2211 WWW ξξ +=     (1.2) 

Where W1 and W2 still have the same meanings as before and 1ξ  and 2ξ  are their amplitudes 

assumed small relative to unity. We shall however assume 11 <<ξ .  Using (1.0) and (1.2) in a 

Galerkin solution of the relevant compatibility and equilibrium equations characterizing a spherical 
shell, he obtained the following equations (for a step loading condition) in the amplitudes 
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Where λ is a non-dimensional step load amplitude (non-dimensionalized with respect to the 
classical buckling load λc), T is the time variable where a1, a2 > 0 are constants and ωi, i = 0, 1, 2 are 
the circular frequencies of the associated modes. Using some simplifying assumptions [4,10], 
Danielson verified the dynamic buckling load using a two-liming singular perturbation procedure. In 
our present investigation the structure is no longer trapped by a step load but by a sinusoidally lime 
dependent slowly varying load represented by λcosδoT, δo<<1.  Thus in this case the equation 
corresponding to (1.3) becomes 
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Various methods have over the years been employed to solve dynamic buckling problems, 
majority of these problems which are essentially nonlinear in nature. Relatively recent methods 
include numerical method [4,11] and differential quadrature method [12]. We shall however employ a 
two-timing regular perturbation method to analyze the problem. We remark that such problems with 
sinusoidal coefficients are often analyzed by using Mathieu-type of instability. However as noted by 
Budiansky [3,page 100], Mathieu-type of instability is usually associated with many cycles of 
oscillations as opposed to just one shot of oscillation that characterizes dynamic buckling The 
procedure to be adopted is as follows: We shall first determine uniformly valid asymptotic formulae 
of each of the buckling modes and determine their maximum values. We shall next determine the net 
maximum buckling mode ξ2, which is the sum of the maxima of the two buckling modes. Thus if ξ1a 
and ξ2a are the maxima of ξ1 and ξ2 respectively then 

    aam 21 ξξξ +=     (1.7) 

Following the definition by Budiansky and Hutchinson [1-3] that λD is the maximum load 
parameter for which the net maximum buckling mode remains bounded for all time T>0, we shall 
finally determine λD from the maximization 
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As in [l0] we shall set ξ1 = 0 and now let 
    Tt oω=      (1.9) 

As in some examples in [1-3] we shall ignore the inertia of the pre-buckling mode and so set 
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.  Thus equations (1.6), (1.4) and (1.5) become respectively 
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We shall assume 10,1 <<<<∈ δ  and note that the formulation contains two small but 

unrelated parameters ∈  and δ  while the coefficients are sinusoidally slowly varying in time. We 
shall now assume 
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Where α = 1,2 and a subscript following a comma indicates partial differentiation with 

respect to that subscript and ( )′=
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 Where the terms ij on ηij and ζij are superscripts and not powers.  On substituting (1.17) and 
(1.16) into (1.11) (for  α = 1) and simplifying we get  
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Similarly we now substitute (1.17) and (1.16) into (1.11) and for α = 2 and simplify to get 
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The initial conditions are 
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Having set 01 =ξ , it was found out that 
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The solution of (1.19a) is 
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We now substitute (1.244a) into (1.9b) and equate to zero the coefficients of cosRt and sinRt get 
respectively  
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We solve (1.25) to get 



Journal of the Nigerian Association of Mathematical Physics, Volume 9 (November 2005) 
Dynamic buckling load of spherical shells trapped by varying load  A. M. Ette    J of NAMP 

   ( ) ( ) ( ) 4

1

111 cos1

1
0;0 









−
−==

τλ
λττ bbd      (1.26) 

 The solution of the remaining equation in (1.9b) is 
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We have used (1.22b) (for k=1) to get (1.27b). Since we expect the final solution of (1.27a, b) to 
depend on the initial conditions as in (1.27b), we expect that on the final analysis the full solution of 
(1.27a, b) will be 
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This follows from the fact that the full expressions for both b2(τ) and b2(τ) will eventually be 
multiplied by he initial values b2(0) and d2(0) and since these values vanish as in (1.27b) then (1.28) 
suffices.  We also see that based on (1.26), 
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We note that Q is as defined in (1.13b) and is such that Q > 0 We next substitute into (1.18b), noting 
(1.28), and to ensure a uniformly valid solution we equate to zero the coefficients of cosQt and sinQt 
and get respectively 
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The solutions of (1.31a), using (1.30b), are 
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 The remaining equation in (1.18b) is solved (using (1.22a) for i = 2, j = 1 and (1.22c) for k = 1 
to get 
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Because of the homogeneous initial conditions in (322) we expect that on full solution we shall 
eventually get 
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To ensure a uniformly valid solution, we equate to zero the coefficient of cosRt in (1.33) and get 
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The remaining equation in (1.33) is solved, (using (1.22a) for r = 3, s = 0 and (1.22d) to 
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We note that  
 

     011201021 =+ ζηζη      (1.43) 
 And next substitute in (1.21b) and thereafter equate to zero the coefficients of cosRt and sinRt and 

obtain the following  
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The remaining equation in (1.21b) is simplified to yield 
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The solution of (1.46) is 
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So far we write 
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2.0 Maximum Amplitude, ζζζζM 

We shall now determine the maximum amplitude of each of the buckling modes ζ1 and ζ2 and 
now let t1c be the critical values of t for ζ1 and ζ2 respectively.  Similarly we shall let τ1c and τ2c, ct1  

and ct2  be the values of τ and t  respectively for these two respective modes to have a maximum.  

We shall assume the following asymptotic series. 
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A necessary condition for η(t,r) to have a maximum is following (1.5) 
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This is evaluated at the critical point.  For terms of order ∈2, this means  
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This translates to 
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In an approximate way, the least nontrivial value of )1(
ot  is obtained by retaining just the first 

two terms in the expansions of the sine functions in (2.3a) getting  
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Upon determining to
(1) from (2.3a,b), the maximum amplitude a1ξ  of )(1 tξ  (or of ),( τη t ) is 

obtained 20η  at its critical point to obtain 
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The condition for maximum amplitude a2ξ  of )(2 tξ  or (of ( )τξ ,t ) is obtained by 

substituting ζ for η in (2.2a).  For terms of order ∈, this give 
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Where we have taken the least nontrivial value of )2(
ot .  Similar evaluations give 
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Thus the maximum value ζ2a is 
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The net maximum amplitude ζm is 
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3.0 Dynamic buckling load λλλλD 

We determine the dynamic buckling load from the maximisation given in (1.8).  For reasons 
noted in [3,13,14], this is accomplished by first reversing the series (2.7a,b) in the form 
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By substituting for ζm in (3.1a) from (2.7b) and equating the coefficients of powers of ∈, we 
get 
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The final results are here presented in two levels of approximations.  First by taking the two 
terms in (2.7b) and (3.1a) and carrying out the maximization in (1.8), we get 
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Which is evaluated at buckling.  By now evaluating (3.1a) (first two terms) at buckling and 
letting ∈D be the value of ∈ at buckling we have 
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On simplifying (3.3d) we get 
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 We note that (3.4) furnishes us with the expression for evaluating the dynamic buckling load 
λD.  We also note that the effects of both the quadratic term a1ζ1

2 and the coupling term ζ1ζ2 are 

conspicuously absent in (3.4).  This is due to our having dropped the imperfection parameter 1ξ .  As 

noted in [13] if we had dropped the imperfection parameter 2ξ  instead of 2ξ , the ensuing result 

would have contained the effects of the quadratic term 2
11ξa  and excluded the effects of both the 

quadratic term 2
22ξa  and the coupling term 21ξξ .  The only condition under which the combined 
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effects of both quadratic terms 2
11ξa  and 2

22ξa  as well as the effects of coupling are simultaneously 
felt is if both imperfection parameters are not deleted.  In the case under study (that is the case where 

01 =ξ ), buckling is initiated by the nonlinear term 2
22ξa  and not by the quadratic (nonlinear) term 

2
11ξa  nor by the coupling term 21ξξ .  The effects of coupling is thus conspicuously absent.  We can 

relate the dynamic buckling load λD to the static buckling load λs.  This is done [1-3] by dropping the 

inertia terms as well as the quadratic term 211ξa  in the governing equations (1.3) to (1.6).  Thus we 

have  2212
2
221 )1(;0)1(; ξλξξλξξλξλξ −+−=+−= ao    (3.5a) 

Finally the static buckling load sλ  follows from the maximisation 0
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=
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From (3.5a) and (3.4), we obtain 












+

−
−

−
+
























=










−
−

222

)1(

22

)1(
)(

20

2
1

2
22

2

2

3

(

cos2

4(2

2cos
cos

33

4

1

1

QRQ

Rt

RQ

Rt
Qt

a oot
o

oos

D

s

D

α
ω
ω

ω
ω

λ
λ

λ
λ

 (3.6) 

As reported in [4] the result corresponding to (3.6) obtained by Danielson for the case of step 
loading is  
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where λc is the classical buckling load. 
A rather more elaborate refinement of the result (3.6) can be made by using three terms in 

(3.10a,b).  In this case the maximisation (1.8) yields, through (3.1a), 
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From where we obtain 
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From (3.11a), we obtain 
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A straightforward evaluation, using (3.8c) gives 
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where the appropriate sign is chosen.  From (58a), we get 

   ( )2
321 3333 mmm sss ξξξ ++∈=    (3.8e) 

evaluated at buckling.  By making 23 mξ  the subject in (3.8a) and substituting same in (3.8e) and 

simplifying we get 
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which is evaluated at buckling.  A simplification of (3.8f) using (3.8d) yields 
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We now use (3.5b) in (3.9a) to get 
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where (3.9a,b) are evaluated at λ = λD 
4.0 Summary of Results 
 We expect the results (3.9a,b) to be better representatives of (3.4) and (3.6) respectively.  All 
the results are valid provided Q ≠ R, Q ≠ 2R, Q ≠ 0 and R ≠ 0.  Except for the λD on the right hand  
side of (3.4) all other terms there are independent of the load parameter so that any evaluation of AD 
is a routine exercise. The results (6.9a,b) are implicit in λD especially through.  The results to be 

principally initiated by the quadratic term 2
22ξa .  The coupling effect are not felt.  Analysis reported 

elsewhere [13] indicates that if we had neglected the imperfection parameter 2ξ , buckling would 

have been dominated by the quadratic term    with the effects of both the coupling term 21ξa  and the 

quadratic term 2
22ξa  being absent or minimal.  The same report also shows that by neglecting the 

imperfection parameter we automatically neglect the effects of the quadratic term 2
11ξa . Similarly by 

neglecting the imperfection parameter 2ξ , we automatically neglect the effects of the quadratic term 

2
22ξa . The converses of these observations are not true. 
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Thus neglecting both 2
11ξa  and 2ξ  (Danielson’s assumption [4,10] appears indeed to be 

superfluous because a neglect of necessarily implies a neglect of the quadratic term (the converse not 
being true). It therefore stands to be concluded that for the problem at hand (and perhaps similar other 
cases) the only condition under which the effects of any nonlinearity of any buckling mode is felt is if 
the imperfection in the shape of the nonlinearity is not neglected. Similarly the coupling effects of the 
buckling modes are felt only if the imperfections in the shape of the coupled buckling modes are not 
neglected. All results are of course valid for condition at the immediate post dynamic buckling 
consideration. 
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