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 Abstract 
 

In this paper we determine the dynamic buckling load of a strictly nonlinear but 
weakly damped elastic oscillatory model structure subjected to small 
perturbations The loading history is explicitly time dependent and varies slowly 
with time over a natural period of oscillation of the structure. A multiple timing 
regular perturbation method is used in asymptotic expansions of the variables. 
The elastic model structure is itself a generalization of most physical elastic 
structures in common use in Structural Engineering .The dynamic buckling load 
is obtained nontrivially and compared with related previous results of similar 
loading conditions. The result shows that the dynamic buckling load does not 
depend on any particular form of the loading function but depends on the first 
and second derivatives of the loading function evaluated at the initial 

 
  pp 165 - 174 
 
1.0  Introduction  
 In this paper we are concerned with an asymptotic solution of a strictly nonlinear oscillatory and 
dissipative system of second order where the coefficients are explicitly time dependent and the loading 
varies slowly with time over a natural period of vibration of the system. Though the setting is in 
Mathematics, it is pertinent to point out that the original arena of inquiry where dynamical systems with 
slowly varying parameters was first analyzed was in Physics [1,2] where it was analyzed in connection 
with waves, rigid bodies, charged particles etc. In one of such areas of application, Kevorkian and Li [2] 
used this technique to study free-electron lasers (FEL) – a Mathematical problem dealing with general 
strictly nonlinear oscillators whose early studies were mostly Quantum Mechanical. [3]. In other areas 
of investigation, Li [4] investigated free –electron lasers with variable parameter wigglers using the 
same technique while Li and Kevorkian [5] studied the effects of wiggler taper rate and signal field gain 
rate in free –electron lasers. 
 Mathematical problem with slowly varying parameters started with the investigation by 
Kuzmak [6] .This was extended to higher order by Luke [7] in his work on nonlinear nearly periodic 
waves. The present study is therefore an application of these early investigations to dynamic buckling 
where the loading history is explicitly time dependent and varies slowly with time over a natural period 
of oscillation of the structure. 
 Most existing dynamic buckling investigations have tended to discuss nonlinear dynamical 
systems where the loading history is implicit in time. Such loadings include step loading [8-11], 
rectangular load [10] and impulsive loading [10] .Because the ensuing differential equations in most 
cases  are autonomous ,a relatively easy method such as phase plane analysis is usually used to analyzed 
the problems .Consideration of buckling cases where time is explicit are relatively few. These include 
triangular load [10] and periodic load [12] .In one of such attempts, Svalbonas and Kalnins [12] 
developed a computer program for solving such problems and used same to determine the dynamic 
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buckling load of a spherical shell.  Similarly, Aksogan and Sofiyev [13] analyzed a case where 
cylindrical shells were subjected to a time dependent external pressure varying as a power function of 
time. 
 
2.0  Formulation 
 A relatively simple elastic model structure that amply captures the essence of our objective [8-
11] is a two-armed simply supported structure (column) (Figure 1) subjected to a loading F(T) at time T= 
0. The structure is assumed rigid and weightless and carries a mass M at the center.  The motion of M is 

restrained by a nonlinear “softening “ spring that provides a force ( ),3xxKL β− where K >0, 0>β  and 
where L is the length and K is the spring constant while x is the central hinge displacement from the 
equilibrium position. By assuming a weak viscous damping given proportional to the velocity and 
assuming small angular displacement ( )φφφ ≅≅ sin,  1 cos , the relevant differential equation is easily 
found to be 
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Figure 1: Simple elastic  “cubic” model 

 
where Q is the damping coefficient and x  is the initial displacement which serves as initial imperfection. 
The following nondimensional quantities are now introduced  
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Thus the nondimensional form of (2.1) becomes 

  ( ) 0t  ,  )t (b - )t (1 3 >=−+∈+ δξλξξδλξξ ff&&&   (2.2a) 

   ( ) ( ) 00 0 == ξξ &       (2.2b) 

where 
( ) ( )•≡
td

d
 . Here b is the imperfection-sensitivity parameter which, for a “softening” spring 

which we are considering is such that b>0. Without loss of generality and for ease of further analysis we 
shall automatically set b = 1 in (2.1). We note that λ  is a non-dimensional load amplitude and satisfies 
the inequality 0 < λ  < 1.  It is the amplitude of the explicitly time dependent continuous and slowly 
varying load function ( )tδf  which has right hand derivatives of all orders at 0=t  and satisfies the 
following conditions 

    ( ) ( ) 0.tfor     1 t f   ,  10 >≤= δf    (2.3) 
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The parameters δξ    and ,  ∈ are considered small relative to unity and generally we have .1<<ξ

However we shall assume .10 << ξ Because of the nonlinear term, 3ξ  the system (2a,b) thus represents 
a nonlinear cubic dissipative and oscillatory system whose solution we shall seek. 
 This investigation is an extension of similar (but viscously undamped) ones where in the case in 
[14], we had assumed that δ  and ∈  were mathematically not related. In the case in [15] we assumed 

that δ  and ∈  were related in the form δ = 2ξ .The results in both cases showed that the dynamic 

buckling load depends on ( ). 0 f&   In [16] we assumed the relation δ =ξ  and observed that unlike in 

the first two cases ,the dynamic buckling load depends on both ( ). 0 f& and ( ). 0 f&& In the present study  
we shall assume the relation  
      

2ξξδ +=     (2.4) 
and hope to determine the dynamic buckling load for this case. For simplicity of further analysis we 

shall set      ξ∈= .     (2.5) 
Similar buckling analyses were investigated by Popov [17], Zhu et al [18], Heinen [19] and Schenk 
[20].  In our quest for solution, we are to determine a particular value of λ , say λ D, called the dynamic 
buckling load satisfying the Inequality 10 ≤<<< csD λλλ  for which the nonlinear cubic model 

structure buckles dynamically under the slowly varying explicitly time dependent load ( ). t δf Here 

c  and  λλs  are the static buckling load and the classical buckling load respectively of the undamped 

structure. The dynamic buckling load Dλ  is here defined as the maximum load amplitude for which the 

solution of the problem remains bounded for all time . 0>t   Equation (2.2a) is in fact a generalization 
of most physical elastic systems such as columns on nonlinear elastic foundations, beams, cylindrical 
shells, plates and even toroidal shells to mention a few. For solution we shall first use a two- timing 
regular perturbation scheme to derive a uniformly valid asymptotic expression of the displacement ( )tξ
. We shall next find the maximum value of ( )tξ  and lastly use another maximization to determine the 

dynamic buckling load Dλ . 
 Since the static and step loading results of the associates undamped structure are well known [8-
11] we set straight to solve (2a, b). Now using (2.4) and (2.5) and setting b = 1 as earlier indicated we 
have 

      ( ){ } ( ){ } ,  0t  ,   -  1 232 >+=+−++ tftf ξξλξξξξξλξξξ &&&  (2.6a) 

    ( ) ( ) .00 0 == ξξ &      (2.6b) 

We now let ( ) ( ){ } ( )2
1

2
1

22 )(1 t 1
td

dt
   ;    t τλξξλξξτ ff −=+−=+= .  (2.7) 

Thus we have   ( ) ( ) τξξξξλξ  1 2
2
1

++−= tf& ,    (2.8a) 
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   12 1

2
1

22222
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tt
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where τξξ   and  t  indicate partial derivatives with respect to the given arguments and 
( ) ( ) .′≡
τd

d
We 

now assume the following  
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and substitute (2.8a,b) and (2.9) into (2.6a,b) and equate to zero the coefficients of powers of 

L1,2,3,i    , =iξ  and get 
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etc., and the associated initial conditions evaluated at ( )τ,t  = (0,0) are 

    ( ) ( ) ,. 0  ;1,2,3,i, 0 1 === t
i ξξ L    (2.13a) 

    ( ) ( ) ( ) , 01 12
1

2 =−+
−

τξλξt     (2.13b) 

    ( ) ( ) ( ) ( ){ }  01 122
1

3 =+−+
−

ττ ξξλξt    (2.13c) 

The solution of (2.10) subject to (2.13a) for I = 1 is 

    
( ) ( ) .sincos 11 Btbta ++ ττ

    (2.14a) 

    ( ) ( ) ( ) 00b  ;
1

00 11 =
−

−=−=
λ

λ
Ba    (2.14b) 

Henceforth we shall let    
    . )0(0 BB =      (2.14c) 

On substituting into (2.11) and equating the coefficients of cost and sint we obtain respectively 
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The solution of (2.15a) using (2.14a) is     
    ( ) . 01 =τb       (2.16a) 
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The solution of (2.15b) subject to (2.14b) is  
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The remaining equation in (2.11) is now solved to get  

   ( )( ) ( ) ( ) . , sincos, 22
2 tbtat τττξ +=     (2.17a) 

  ( ) ( )
( )

( )[ ])2(0 4

-1 4

B
- 0b  , 00

2
3

0
22 λ

λ

−−′== fa    (2.17b) 

We now substitute into (2.12) and equate to zero the coefficients of cost and sint and get respectively 
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The integrating factor of (2.18a, b) is ( ) 24

1

1
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−

− ef  and the solution of (2.18a) subject to (2.17b) is 
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( )( ) .10where
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Similarly the solution of (2.18b) is 
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The remaining equation in (2.12) is  
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Thus we have  
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We now write    ( ) ( ) ( ) ( ) ( )
L+++== 33221, ξξξξξξτξξ tt   (2.21) 

We shall now determine the maximum displacement ( ) ( )  , aaa tt τξξ = where  aa   tand   ,τat  are the 

critical values of the associated time variables at maximum displacement.  We shall assume the 
following asymptotic expansions  
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From (2.8a) the condition for maximum displacement is  
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evaluated at the critical values .  tand  ,, aaat τ By substituting for a  tand  , aat τ from (2.22a-c) and 

equating to zero the coefficients of powers of L1,2,3,i  =iξ  we get, for the coefficient of ξ  
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To determine the maximum displacement aξ , we evaluate (2.21) at the critical values and get 
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To determine 10 t  and  t  we know from (2.7) that  

 ( ){ }∫ +−=
at

a dssft
0

2

1
21 ξξ  

      = ( ) ( )
( ) ( ) ( ) ( )

L+










 ′′++

′+









−
−−

2

0

2

0

12
1

3222
2
1

ftft
t aa
a

ξξξξ
λ

λλ  (2.25a) 

On substituting (2.22a) into (2.25) and equating the coefficients of powers of ,2,1, =iiξ we get 
respectively 
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For further simplification of (2.24) we shall now let  
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so that we have   
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Again for ease of further analysis we let 
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Thus we have     
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Following [8-10], we now determine the dynamic buckling load Dλ  from the maximization  
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For reasons noted in [21-23] we first have to reverse the series (2.26d) in the form 
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and where each ei depends on λ for I=1,2,3,…The maximization  (2.27)  is now accomplished through 
(2.28) to give    
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To simplify (2.30b) we note that  
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where every function of λ  is henceforth evaluated at Dλ .Therefore the simplification of (2.30b) now 
yields 
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and where we have taken the negative sign in (2.30b) because it is the negative sign that duplicates the 
step loading result when ( ) . 0≡τf  On multiplying (2.28) through by 3 we get 

     ( ) 2
321 3.33 aaa eee ξξξξ ++=    (2.33a) 

We now make 2
33 ae ξ  the subject in (2.30a) and substitute same into (2.33a) and get 
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and this is evaluated at λ = Dλ .On simplifying (2.33b) we get 
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3.0 Analysis of the result 
 The results (2.34a, b) which are implicit in the load parameter Dλ  are strictly asymptotic and are 

valid for small values of the parameter ξ . They do not depend on any particular type of the load function 

( )t δf  provided equation (2.3) is satisfied but depend on both ( ) ( ). 0 f  and  0 ′′′f This is unlike the 

results in [14, 15] which depend on ( )0 f ′  only. For the purpose of comparison we recast equivalent and 
respective results obtained in [14-16] as follows: 
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Where all other terms not explained are as defined in the cited works. The corresponding step loading 
result is obtained by setting ( ) ( ) 00 0 =′′=′ ff  in (2.34a,b). It is observed that the step loading result 
is conservative. 
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