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 Abstract 
 

The response of uniform Rayleigh bean, carrying moving masses, resting on 
variable Winkler elastic foundations is investigated in this work. The 
governing equation is a fourth order partial differential equation.  For the 
solution of this problem, in the first instance, Galerkin’s method was used.  
The Galerkin equation representing the coefficient of the response is then 
solved using the modified asymptotic method of Struble.  It is observed that the 
transverse deflections of the uniform Rayleigh beam under the actions of 
moving masses are higher than the deflections when only the force effects of 
the moving load are considered.  Therefore, the moving force solution could 
be misleading.  Also  the analysis show that the response amplitudes of both 
moving force and moving mass problems decrease both with increasing 
Foundation modulus K and with increasing Rotatory inertia correction factor 
Ro. 
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1.0 Introduction 
 The study of the behaviour of elastic solid bodies (beams, plates or shell) subjected to moving 
loads has been the concern of several researchers in applied Mathematics and Engineering. More 
specifically, several dynamical problems involving the response of beams on a foundation and without 
foundation have variously been tackled [1,2]. Among the earliest work in this area of study was the work 
of Stokes [3], who obtained an approximate solution for the response of a beam by neglecting the mass of 
the beam.  This is because the introduction inertia effect of the moving mass would make the governing 
equation cumbersome to solve as reported in [4], recognizing this difficulty Pestel [5] applied Rayleigh – 
Ritz techniques to reduce the moving mass problem defined by a continuous differential equation to an 
approximate system of discrete differential equations with analytic coefficients. The system was reduced 
by a finite difference scheme for solution, but no numerical results were presented. After this, several 
researchers have approached this problem by assuming that the inertia of the moving load was negligible. 
In fact Arye et al [13] pointed out, in their summary of work done previous to 1952 that the fundamental 
mathematical difficulties encountered in the problem lie in the fact that one of the coefficients of the 
linear operator describing the motion is a function of space and time.  They added that it is caused by the 
presence of a Dirac-Delta function as a coefficient necessary for a proper description of the motion.  It is 
remarked at this juncture that, physically, this term represents the interplay of the inertial forces due to the 
discrete masses distributed over the structure during the motion [1].  Arye et al [13] also considered the 
problem of elastic beam under the action of moving loads. They assumed the mass of the beam to be 
smaller than the mass of the moving load and obtained an approximate solution to the problem. This is 
followed by the other extreme case when the mass of the load was smaller than the mass of the beam. In 
particular, the dynamic response of a simply supported beam traversed by a constant force moving at a 
uniform speed was first studied by Krylov [11]. He used method of expansion of Eigen function to obtain 
his results. Lowan [12] also considered the problem of transverse oscillations of beams under the action 
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of moving loads for the general case of any arbitrary prescribed law of motion. He obtained his solution 
using Green’s functions. 
 
 
 
 The problem of a load moving along elastic beam on an elastic foundation is of great theoretical 
and practical significance. Extensive theoretical and experimental investigations have been carried out, 
particularly, when the foundation modulus is constant along the span of the beam. 
 More recently, the problem of the dynamic response of a non-uniform beam resting on elastic 
foundation and under moving concentrated masses was tackled by Oni [8].  Analysis of his results show 
that the response amplitude of both moving force and moving mass decrease with increasing foundation 
moduli. Similarly, Oni and Omolofe [10] investigated the dynamic behaviour of a finite Bernoulli-Euler 
beam on an elastic foundation to masses moving at non-uniform velocities. They concluded that for all 
variants of classical boundary conditions, when the axial force is fixed, the displacements of a uniform 
Bernoulli-Euler beam resting on elastic foundation and traversed by masses travelling at varying speeds 
decrease as the foundation moduli increase. 
 In all the aforementioned investigations, problems have been largely restricted to the case when 
the foundation stiffness varies along the span of the station. Thus, this paper considers the response to 
moving concentrated masses of uniform Rayleigh beam resting on variable elastic foundation. 
 
2.0 The governing equation 
The differential equation for the deflection curve of an elastic Rayleigh beam under a moving load when 
the beam is of constant flexural rigidity EI and supported by a variable elastic foundation is given by: 
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ehere E is the young’s modulus, U(x, t) is the transverse displacement. K(x) is the variable elastic 
foundation, Ro is the measure of Rotatory inertia correction factor and x, t are respectively spatial and 
time coordinates. 
 When the effect of the mass of the moving load on the beam is considered, P(x,t) takes the form: 
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For K(x), the example in [7] shall be adopted and we have: 
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At this juncture, the boundary conditions for our dynamical system are arbitrary and the initial conditions 
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3.0 Analytical solution procedure 
 Substituting equations (12) and (2.3) into (2.1), simplifying and arranging yields 
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Evidently, the method of separation of variables is inapplicable because it becomes difficult to get 
separate equations where functions are functions of a single variable. In the, a closed form solutionof the 
above singular differential equation (3.1) does riot exist.  As a result, an approximate solution is sought. 
Thus, the Galerkin’s technique described in [7] is employed. 
 This elegant technique requires that the solution of the equation (3.1) eakes the form: 
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where Vm(x) is a function chosen such that the appropriate boundary conditions are satisfied.  When 
equation (3.2) is substituted into (3.1) and simplified one obtains 
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In order to determine Wm(t) it is required that the expression on the left hand side of equation (3.3) be 
orthogonal to the functions Vk(x). Hence  
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Simplification and rearrangement of (3.4) yields 
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Using the property of the Dirac-delta function as an even function, it can easily be shown that 
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When use is made of (3.6) in one obtains 
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 It is remarked at this juncture that as the boundary conditions are arbitrary. The most suitable 
form of function Vm(x) is the beam function: 
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where the constant Am, Bm, Cm and the mode number λm are determined by using desired ends support 
conditions.  Thus substituting (3.8) into equation (3.7) yields 
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and Ω0 (m,k), Ω1(m,k), Ω2A(m,k), Ω2B(n,m,k), Ω3A(m,k), Ω3B(n,m,k), Ω4A(m,k) and Ω4B(n,m,k) become 
respectively R0(rn,k), R1(m,k), R2A(m,k), Ω2B(n,rn,k), R3A(m,k), Ω3B(n,m,k), R4A(m.k) and Ω4B(n,m,k) after 
the substitution of(3.8) and summation sign neglected. 
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 Equation (3.9) is the transformed equation governing the problem of a uniform Rayleigh beam on 
a variable Winkler elastic foundation. This second order differential equation holds for all variants of the 
classical boundary conditions. 
 Evidently, an exact solution to equation (3.9) is not possible. Consequently, a modification of 
Struble’s technique described in [9] is employed. Huts equation (3.9) is rearranged to take the form: 
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 First, we shall consider the homogenous part of (3.11) and obtain a modified frequency 
corresponding to the frequency of the free system due to presence of the moving mass- An equivalent free 
system operator defined by the modified frequency then replaces equation (3.11). To this end, the right-
hand side of (3.11) is set to zero and a parameter E < 1 is considered for any arbitrary mass ratio r defined 

as:    
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which implies that all the coefficients of Wm(t) and its derivatives in equation (3.11) can be written in 
terms of the parameter E.  When E = 0, a case corresponding to the case when the inertia, effect of the 
mass of the system is neglected is obtained. In such a case the solution is of the form: 
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Since E < 1 for nay arbitrary mass ratio Γ. Struble’s technique requires that the asymptotic solution of the 
homogenous part of (3.11) be of the form [7]: 
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When use is made of (3.13) and (3.14), equation (3.11) takes the form: 
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to 0(E) only. 
 When equation (3.18) is substituted into the homogenous part of (3.19) one arrives at: 
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retaining terms to 0(E) only. 
 The variational equations are obtained by equating the coefficients of 

[ ] [ ]),(cos ),(sin tmtandtmt mm Ω−Ω− θθ  terms on both sides of the above equation. Thus, neglecting 

those terms that do not contribute to the variational equations, equation (3.20) reduces to: 
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From (3.21), the variational equations are obtained respectively as: 
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 Equations (3.24) and (3.25) when solved respectively yield: 
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Therefore, when the effect of the mass of the particle is considered, the first approximation to the 
homogeneous system is: 
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is called the modified natural frequency representing the frequency of the free system due to the presence 
of the moving mass.  Therefore, the differential operator which acts on Wm(t) can be replaced by the 
equivalent free system operator defined by the modified frequency βm.  That is:  
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Using the Laplace transformation technique and the convolution theory, expression for Wm(t) is obtained.  
Thus, in view of (3.2), one obtains: 
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4.0 Some examples of classical end Conditions 

For the purpose of illustrating the foregoing analysis, the following examples of classical end 
conditions are considered namely: 

(a) Simply supported 
(b) Clamped-clamped 
(c) Clamped-free 

4.1 Simply supported uniform Rayleigh beam 
For a simply supported uniform Rayleigh beam, the boundary conditions are: 
 U(0,t) = 0 = U(L,t) and Uxx(0,t) = 0 = Uxx(L,t)    (4.1) 

It then follows that, for normal modes: 
 Vm(0) = 0 = Vm(L) and Vm,xx(0) = 0 = Vm,xx(L)    (4.2) 

which implied that: 
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 Vk(0) = 0 = Vk(L) and Vk,xx(0) = 0 = Vk,xx(L)    (4.3) 
Applying (4.2) and (4.3), we have: 

 Am = Ak = 0; Bm = Bk = 0; Cm = Ck = 0     (4.4) 
which implies λm = mπ and λk = kπ 

Substituting equations (4.4) and (4.5) into equation (3.20), rearranging and following the same 
arguments with those in previous section, Struble’s technique is used to obtain: 
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as the modified frequency of the free system due to the presence of the moving mass of the model.  θm is 
the frequency of the corresponding moving force problem. 

Thus, the moving mass problem reduces to: 
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which when solved in conjunction with the initial conditions yields expression for Wm(t).  Thus, using 
(3.2), one obtains: 
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(4.10) represents the transverse-displacement response to a moving mass of a simply supported uniform 
Rayleigh beam on a variable Winkler elastic foundation. 

The corresponding moving force solution is: 
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4.2. Clamped-clamped uniform Rayleigh beam 
At a clamped end, both deflection and slope vanish.  Thus for a clamped-clamped uniform 

Rayleigh beam, the boundary conditions are: 
  U(0,t) = 0 = U(L,t); Ux(0,t) = 0 = Ux(L,t)   (4.12) 

Thus, for normal modes: 
  Vm(0) = 0 = Vm(L); Vm,x(0) = 0 = Vm,x(L)    (4.13) 

which follows that: 
  Vk(0) = 0 = Vk(L); Vk,x(0) = 0 = Vk,x(L)    (4.14) 

Applying (4.13) to (3.8) one obtains: 
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and      1−=mB      (4.16) 

The frequency equation can simply be obtained from (4.15) as: 
   cosλmcoshλm = 1     (4.17) 
Expressions for Ak, Bk, Ck and the corresponding frequency equation are obtained by substituting 

k for m in (4.15), (4.16) and (4.17).  Thus, the general solutions of the associated moving mass and 
moving force problems are obtained by substituting relevant results in (4.15), (4.16) and (4.17) into (3.31) 
and (3.32) respectively. 
4.3 Clamped-free uniform Rayleigh beam 

Next at x = 0, the Rayleigh beam is taken to be clamped and at x = L, the beam model is free.  
Thus, the boundary conditions of the Rayleigh beam can be written as: 

 
 
 Uxx(L,t) = 0 = Uxxx(L,t) and U(0,t) = 0 = Ux(0,t)    (4.18) 

Similarly, for normal modes 
 Vm,xx(L) = 0 = Vm,xxx(L) and Vm(0) = 0 = Vm,x(0)    (4.19) 

which implies that 
 Vk,xx(L) = 0 = Vk,xxx(L) and Vk(0) = 0 = Vk,x(0)    (4.20) 

Using (4.19), it is straight forward to show that at x = 0, 
   Am = -Cm and Bm = -1     (4.21) 

also at x = L,  m
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  (4.22) 

and the frequency equation for both end conditions is  cosλmcoshλm = -1  (4.23) 
such that  855.7,694.4,875.1 321 === λλλ  and so on    (4.24) 

Substituting (4.22), (4.23) and (4.24) into equations (3.31) and (3.32), one obtains the displacement 
response respectively to a moving force and a moving mass of a uniform clampled-free ends Rayleigh 
beam on a variable elastic foundation. 
 
5.0 Analysis of closed form solutions 

In studying undamped system such as this, it is desirable to examine the phenomenon of 
resonance.  Equation (4.11) clearly shows that the simply uniform Rayleigh beam on a variable Winkler 
elastic foundation and traversed by a moving force reaches a state of resonance whenever: 
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πθ =        (5.1) 

While equation (4.10) shows that the same beam under the action of a moving mass experiences 

resonance when:   
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From equations (5.2) and (5.3), it can be shown that: 
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Since   
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It can be deduced from equation (5.4) that, for the same natural frequency, the critical speed (and 
the natural frequency) for the system of a simply supported uniform Rayleigh beam traversed by a 
moving mass is smaller than that of same system traversed by a moving force.  Thus, for the same natural 
frequency of the uniform Rayleigh beam, the resonance is reached earlier when we consider the moving 
mass system than when we consider the moving force system. 

Furthermore, from equation (3.32) it is evident that for other classical boundary conditions, the 
uniform Rayleigh beam on a variable Winkler elastic foundation and traversed by a moving force 
encounters a resonant effect when:  
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while equation (3.31) shows that the same beam under the action of a moving mass experiences resonant 
effect whenever:  
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This implies that: 
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Consequently from equations (5.5) and (5.8), the same results and analysis obtained in the case of 
a Rayleigh beam simply supported at both ends are obtained for the other examples of end support 
conditions. 

 
6.0 Discussion of numerical results 

In order to present the calculations of practical interests in dynamics of structures and 
Engineering design for all the illustrative examples, and elastic uniform Rayleigh beam of length 12.192m 
has been considered.  It is assumed that the mass travels at the constant velocity 8.123m/s.  Also EI and ε 
are chosen to be 6.068 x 106m3/s2 and 0.25 respectively.  The results are as shown on the various graphs 
below for the classical boundary conditions considered. 

Figure 6.01 display the effect of Rotary inertia (Ro) on the transverse deflection of the simply 
supported uniform beam in the case of moving mass.  The graph shows that the response amplitude of the 
uniform beam decreases as the value of the Rotatory inertia correction factor increases.  Values of Ro 
between 0m and 20m are used. 
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The effect of foundation constant K on the transverse deflection of moving mass displayed in 
Figure 6.02 shows that an increase in the value of the foundation constant K decreases the deflection of 
the simply supported uniform Rayleigh beam.  Here, values of K between 0N/m3 and 1mN/m3 are used. 

Figure 6.03 displays the effect of Ro on the transverse deflection of the clamped-clamped uniform 
Rayleigh beam in the case of moving mass problem.  It is clear that as the value of Ro increases, the 
deflection of the beam decreases. 

Figure 6.04 shows that, an increase in the value of foundation moduli K reduces the transverse 
deflection of moving mass problem of the uniform Rayleigh beam with clamped ends.  
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T(sec) Displacement, 

W(L/2,t)(m) 
(Moving force) 

Displacement, 
W(L/2,t)(m) 

(Moving mass 
0 0 0 

0.1 -3.244287E-06 -3.244333E-06 
0.2 -4.83799E-05 -4.838319E-06 
0.3 -2.268494E-04 -2.268851E-04 
0.4 -6.595776E-04 -6.597672E-04 
0.5 -1.470749E-03 -1.471429E-03 
0.6 -2.764083E-03 -2.765986E-03 
0.7 -4.60339E-03 -4.607862E-03 
0.8 -6.998967E-03 -7.008212E-03 
0.9 -0.009901 -9.918297E-03 
1.0 -1.320056E-02 -1.323046E-02 
1.1 -1.673623E-02 -1.678663E-02 
1.2 -2.373675E-02 -2.039382E-02 
1.3 -2.373675E-02 -2.384521E-02 
1.4 -2.679335E-02 -2.694557E-02 
1.5 -2.933279E-02 -2.953885E-02 
1.6 -3.126631E-02 -3.153646E-02 
1.7 -3.260056E-02 -3.294464E-02 
1.8 -3.346309E-02 -3.389017E-02 
1.9 -3.412639E-02 -3.464428E-02 
Table 6.01: Comparison of the displacement of moving force mass for 

 clamped-clamped uniform Rayleigh bean 
 

For the purpose of comparison, the displacements of the moving force and moving mass for both 
simply supported and clamped-clamped uniform Rayleigh beams with R° = 4 and K = 100000N/m are 
presented in Figure 6.05 and Table 6.01 respectively. It can be noted that the response amplitude of a 
moving mass is greater than that of a moving force problem for both simply supported and clamped-
clamped uniform Rayleigh beam.  This result also holds for clamped-free uniform Rayleigh beam. The 
same thing obtains for other choices of Ro and K. 
 
7.0 Conclusion  

The objective of this work has been to study the problem of the dynamic response to moving 
concentrated masses of uniform Rayleigh beams on variable Winkler elastic foundations. In particular, 
the closed form solutions of the fourth order partial differential equations with variable and singular 
coefficients of uniform Rayleigh beam moving mass problem is obtained for the solution of the problem, 
Galerkin’s method and a modification of the Strubles technique are employed. For the three illustrative 
examples considered, the moving force solution is not an upper bound for the accurate solution of the 
moving mass solution in uniform Rayleigh beam moving mass problem Also, as the Rotatory inertia 
correction factor increases, the response amplitudes of the beam decreases whether beam is simply 
supported, clamped at both ends or clamped-free. It was also observed that for fixed Rotatory inertia 
correction factor and Foundation moduli, the response amplitude for the moving mass problem is greater 
than that of the moving force problem for the illustrative end conditions considered. Similarly, in Vie 
illustrative examples considered, for the same natural frequency, the critical speed for moving mass 
problem is smaller than that of the moving force problem.s  
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