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Abstract

The influence of foundation and axial force on the vibration of a simply
supported thin (Bernoulli Euler) beam, resting on a uniform foundation,
under the action of a variable magnitude harmonic load moving with variable
velocity is investigated in this paper. The governing equation is a fourth order
partial differential equation. For the solution of this problem, in the first
instance, the finite Fourier sine transformation is used to reduce the equation
to a second order partial differential equation. The reduced equation is then
solved using the Laplace transformation. Numerical analysis shows that the
transver se deflection of the thin beam, resting on a uniform foundation, under
the action of a variable magnitude harmonic load moving with variable
velocity decreases as the foundation constant increases. It also shows that as
the axial forceincreases, the transverse deflection of the thin beam decreases.
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1.0 Introduction

Moving loads causes solid bodies to vibrate intensively, pdatiy at high velocities. Thus, the
study of the behaviour of bodies subjected to moving loads has beemnttexn of several investigators.
Among the earliest work in this area of study was the worKiofoshenko [1] who considered the
problem of simply supported finite beams resting on an elastic &iondand traversed by moving loads.
In his analysis, he assumed that the loads were moving withacbnglocities along the beam.
Furthermore, Kenny [2] took up the problem of investigating the dynaesponse of infinite elastic
beams on elastic foundation when the beam is under the influence afamidyload moving with
constant speed. He included the effects of viscous damping in tleengay differential equation of
motion. More recently, Oni [3] considered the problem of a harmomie viariable concentrated force
moving at a uniform velocity over a finite deep beam. fithods of integral transformations are used.
In particular, the finite Fourier transform is used for lgr@gth coordinate and the laplace transform (hr
the time coordinate. Series solution, which converges, was obt&inetthe deflection of simply
supported beams. The analysis of the solution was carried out for variods spte load. Oni [4] used
the Galerkin method to obtain the response to several movirgesata non-uniform beam resting on
an elastic foundation. The effects of the elastic foundation ontrdheverse displacement of the non-
uniform beam were analyzed for both the moving mass and the associatad foose problems.

Furthermore, Milormir et al [5] developed a theory descriltiivggresponse of a Bernoulli-euler
beam under an arbitrary number of concentrated moving masseshéddrg is based on the Fourier
technique and shows that, for a simply supported beam, the resdneggency is lower with no
corresponding decrease in maximum amplitude when the inertia is gexdside

However, the above studies, though impressive, have failegivto the effects of lateral
reinforcements on the transverse displacement of the beam.
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This paper, therefore, presents the effects of foundation cbrstd axial force on the transverse
deflection of a thin (Bernoulli-Euler) beam, resting on a unifdoundation, under the action of a
harmonic load moving with variable velocity.

2.0 TheMathematical model
Consider a beam under a moving Igéxit), subjected to an axial foré¢ which remains parallel
to thex-axis. A portion of the beam is as shown below:

t

X
Figure 1: The beam’s displacement is governed by the enqu##.6)

£ IV (xt) \ AV (x,t) . /JGZV(
ax* ot? ot

;(’t) + Zlu%—av(g;(’t) + KV(X,t) = P(X!t) (21)

wherex is the spatial co-ordinate, t is the t|m§>; is the partial derivative with respectxo
X

V(x,1) is the transverse displacemdais the Young’'s modulugy is the axial force,
| is the moment of inertigy is the mass per unit length of the be&nms the

foundation constantgy, is the circular frequency arR(x,t) is the moving load.

In this paper, the beam model is taken to be simply supporteldeauce the boundary conditions
take the form:

V(0) = V(LY =0 (2.2a)
0V (O _0V(LY _ 2.26)
ox? ox?

wherelL is the length of the beam.
For simplicity, the initial conditions shall be taken as

\“K@:ozgﬂﬁg
ot
In what follows, we shall consider the load traversing the BernoulérEadam model and
investigate the influence of foundation constant and axial force on tlaieibof the beam under a load
moving with variable speed.
More specifically, we adopt the example in [3], and take our moving load to he fafrh:

P(xt) = P(t)d]x - (x, + BSinat)] (2.4)
whereP(t) indicate the magnitude of the loatha t is the variable speed term for the moving load and
X, B anda are constants.

(2.3)
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The functiond(x) is defined as
0;x#0
(2.5)

a(X) = {OO.X -0

and is called the dirac-delta function with the property:
. f(k), fora<k<b
jacs(x— k)f(x)Jds={0: fora<k=<b (2.6)
0, fora<k=<b
For a harmonic load®(t) is chosen to be of the forR{t) = Pcosat and (2.4) becomes
P(x,t) =P cosatd[x — (X, + Ssin at)] (2.7)
Substituting equation (2.7) into equation (1.1) we have:

ANV(xt)  dA(xt) A (xt) AV (x,t)
Y e A AT T (2.8)
= Pcosaxd[x (%t ,Bsinat)]

21 Problem Solution
In order to solve equation (2.8), we notice that

sinat = at - (at)’ + (@) _ (@)’ + (at)” -.. (2.9)
3 5 7! 9

3 5 7 9
:m{(m) (at) H(at) () }_

3 5 7! 9l
It is clear therefore that i < a t sincea andt are considerably small, sihshall therefore be
approximated tait in this work. Thus equation (2.8) becomes
£ IV (xt) \ 0V (x,1) N 'UGZV(x,t) + 2 oV (x,t)
ox* ox? ot2 ot (2.10)
+KV(xt) = Pcosaw[x— (X + ,Bat)]
A suitable method for solving diverse problems of structurabhdycs is the method of integral

transformation. Particularly, in order to solve equation (2.10)estbo the boundary conditions (2.2a)
and (2.2b), we subject it to a finite Fourier sine transformation given by

L .
V(mt) = J'O V(x,t)smm—:udx (2.11a)
with the inverse
V(x =2 3 V(mtysin (2.11b)
L 1 L
And apply the property of the dirac-delta function (x) given in equation (6). Wieothtain

4.4 2
{EI m f + K}V(m,t) #NT ;72V(m,t) + 410 'V, (mt) + 2uapVs (M)
L L

(2.12)
= PcosaJtsinm—Lﬂ(x0 + [Bat)

Subjecting equation (2.12) to a Laplace transformation using the imitidltmons in (2.3), we have
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4.4 2
{EI mL‘]‘T + K}V(m,r) +N mL;YZV(m,t) +,ur2V(m,t) + 24V (myr)

m m
psin V%0 Psin—msx P(COSTHXOJ(T_RO - wj
= + +

2 2 2
o=y =] ]
r L r L L (2.13)

o Gl
L L
* 2
2 rz(mlzﬁa + a)J
L
Equation (2.13) can be rearranged to take the form:
EPsinmm0 lPsinmm0
V(mr) = 2 L + 2

e | e

(2.14)
1 p[coswj(miﬁxo i} Q’jsi“ 1 p[coﬂ (mwo i} “’j
+ 2 L L + 2 L L
2 2
R) rz(nm_wj R) rz(nwﬁa,+a)j
L L
where
4.4 2
Ro =| Bl " +K +Nm§2+yr2+2/,z%r
L L
A further rearrangement gives
r r b a
R 2 R 2 P2 P 2
V(m,r): r~+a re+b — re+b + re+b (2.15)
(r-k)(r—kp) (T=k)(r—kp) (r—k)(r k) (r —k)(r —ky)
where
mBa mBa Psin /%0 Pcos /%0
a=w+ b=w- R = L = L
L L 2uU 2u
2 2
H3 H3 m 772
kg =-——>+,—>-H;-H ;
1 2 \/ 4 1 2 L2
2 2
kzz—k— &—Hl—Hzm 4
2 L2
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where
Eim*7* K

Hy=————+—Hp :EandH3 = 2y,
7 H H
But
1 _ 1 1 1 (2.16)
(r—kl)(r—kz) kl_kZ r—k]_ r—k2
In order to obtain a Laplace inversion of equation (15), we adopt the follogpnesentations:
r
n(=R—-—> .gz(r) R——s
2 r2 + b2
b a
g3(r) P2 2 b2 ’94(r) = P2 2 2
and f(r)= L = 1 : LI ! : ! (2.17)
(r - kl)(r - kz) kl —kz r— k]_ k]_ - k2 r— k2

So that the Laplace inversion of each ternv(@h,r) is obtained by applying the convolution theory
given by

f0* g = [ fe-ugWds i=1234 (2.18)

Thus we have
; |ek1(t—u) _ eka(t-u)

f(r)*our) = F?LJ.O' — {cosaudu; (2.19)
1~ K2
kp(t—u) _ ko(t—u)
tle e
f(r)*gy(r) = Fﬂo = cosbudu; (2.20)
17 K2
ke (t-u) _ ko (t-u)
f(r)*ogs3(r) = PZJ't c ” E sinbudu; (2.21)
1~ K2
|ek1(t u) _ gka(t-u)
f(r)*gqa(r)= sz V- {sinaudu; (2.22)
1~ K2

The Laplace inversion of equation (2.15) is thus obtained byngpthie integrals (2.19), (2.20),
(2.21) and (2.22) and substituting as appropriate into equation (2.15). Thus we have

V(m,t):|1—|2+|3—|4—|5+|6+|7—|8 (223)
where

Iy = P1k12 5 glat  @sinat —cosat}; (2.24
(ki —ko)(k{ +a%) L Ky

I, = Fikzz 5 ghot , asinal —cosat} (2.25)
(k1 —ko)(k5 +a%) k3

I3 = Fiklz 5 {eklt +M - cosbt}; (2.26)
(kg —ko) (k" +b*) Ky
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lg = Fikzz 5 kot 4 bsinbt _ cosbt}; (2.27)
(kg —ko)(k5 +b%) L ko
[ LKt
Is = P2k12 . D™ _ ginpt — RCOSOL | (2.28)
(ke — ko) (ki +b%)| ki kg
o !
I = P2k22 . D™ _ sinbt - 200t | (2.29)
(ke —ko)(k +b%)| K2 k2|
kqt 1
I = P2k12 > ac —-sinat - acosat ; (2.30)
(ki — ko) (ki +a%)| Kk S
and
kot
lg = P2k22 5 3T _sinat - 200t (2.31)
(k1 —kp)(ks +a%)| ko K2

which on Fourier sine inversion becomes

22 Rk kit , asinat _ } Pko
V(xt) == e t-
(xD) Lz{(kl—kz)(kf+a2){ae T T kg ad

m=1 1
x{aeth N asinat _ cosat} N Plkl2 . {beklt N bsinbt cosbt}
K2 (kp —k2)(ki” +b%) ky
] plkzz : [aeklt 4 bsinbt _ Sbt] P2k12 :
(kg —kp)(k2 +b%) k2 (kg = ko) (ki +b?)
kqt kot
N be _sinbt - bcosht N P2k22 . be _sinbt - bcosbt
Ky Ky (k —ko)(k5 +b%)| Ko ko
kot
N P2k12 ' €T inat acosat
(kg —ko)(k& +a%)| ki kg
kot
- P2k22 5 %7 _sinat - 2905 | g MK (2.32)
(kg —ko)(k5 +a%)| ko ko L

Equation (3.32) is the response of a simply supported thin reinforcadubdar the action of a
variable magnitude harmonic force moving with variable velocity.

3.0  Numerical Calculationsand Discussion of Results

For the purpose of Numerical analysis, the length of the beaho$en to be 12.192m while the
valueEl is chosen to be 6.068 x%kym’/s”. The results are as presented in the tables below.

Table 1 presents the deflection (V) at various times tmthe foundation constait is varied
between ON/m® and 1,000,000N/n?. The deflection() at various times$ when the axial forceN) is
chosen to be 0, 20 million and 40 million Newton respectively is presented inZLable
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Tablel

SIN  T(se) V(m) atk =0 V(m) atk = 100,000 V(m) atK = 1,000,000
1 0 0 0 0
2 0.1 -1.874334E-10 -1.874296E-10 -1.873982E-10
3 0.2 -4.503662E-10 -4.503299E-10 -4.499987E-10
4 0.3 -4.450309E-10 -4.449137E-10 -4.438644E-10
5 0.4 5.140222E-11 5.161094E-11 5.348322E-11
6 0.5 1.139216E-09 1.139439E-09 1.141431E-09
7 0.6 2.792605E-09 2.79263E-09 2.792902E-09
8 0.7 4.871387E-09 4.870884E-09 4.866344E-09
9 0.8 7.15235E-09 7.150851E-09 7.137346E-09
10 0.9 9.376002E-09 9.372964E-09 9.345634E-09
11 1.0 1.129931E-08 1.129417E-08 1.124797E-08
12 1.1 1.274303E-08 1.273526E-08 1.26655E-08
13 1.2 1.36235E-08 1.361267E-08 1.351547E-08
14 1.3 1.396238E-08 1.394816E-08 1.382076E-08
15 1.4 1.387312E-08 1.385534E-08 1.369618E-08
16 1.5 1.352848E-08 1.350709E-08 1.33157E-08
17 1.6 1.311735E-08 1.309236E-08 1.286907E-08
18 1.7 1.280139E-08 1.277288E-08 1.251841E-08
19 1.8 1.268168E-08 1.264973E-08 1.236486E-08
20 1.9 1.278232E-08 1.274696E-08 1.243219E-08
Table2
SIN  T(sec) V(m)atN=0 V(m)atN=20,000,000 V(m)atN = 40,000,000
1 0 0 0 0
2 0.1 -1.874331E-10 -1.866118E-10 -1.857923E-10
3 0.2 -4.503664E-10 -4.408951E-10 -4.314922E-10
4 0.3 -4.450311E-10 -4.105296E-10 -3.765804E-10
5 0.4 5.140199E-11 1.292244E-10 2.048364E-10
6 0.5 1.139216E-09 1.272796E-09 1.40035E-09
7 0.6 2.792605E-09 2.982935E-09 3.160431E-09
8 0.7 4.871386E-09 5.105839E-09 5.317311E-09
9 0.8 7.152348E-09 7.406051E-09 7.623628E-09
10 0.9 9.375999E-08 9.616161E-08 9.8051E-09
11 1.0 1.12993E-08 1.149132E-08 1.161664E-08
12 1.1 1.274302E-08 1.285691E-08 1.289002E-08
13 1.2 1.36235E-08 1.363919E-08 1.356396E-08
14 1.3 1.396236-08 1.387278E-08 1.368452E-08
15 1.4 1.38731E-08 1.368436E-08 1.339476E-08
16 1.5 1.352846E-08 1.325743E-08 1.288765E-08
17 1.6 1.311732E-08 1.278702E-08 1.236342E-08
18 1.7 1.280136E-08 1.24355E-08 1.198371E-08
19 1.8 1.268166E-08 1.229949E-08 1.18391E-08
20 1.9 1.278228E-08 1.239487E-08 1.19359E-08

Comparing the deflection at various values of the foundationamndtable 1 shows, for fixed
that the transverse displacement of the beam decreashe &sundation constant K increases. It is
observed from Table 2 that, for fixédthe displacement response of the beam decreases astiteeff
the axial forcel) increases.
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4.0 Conclusion

The influence of Foundation and axial force on the deflection sfmply supported thin
(Bernoulli-Euler) beam under the action of moving load has bestiedt in this work. The beam is
assumed to rest on a uniform foundation and the load is moving with varitdd#we

The beam problem is solved using the Fourier sine transforms guattial coordinate x and
Laplace transform on the other partial coordinate t. The diefte¢V) at time (t) For various values of
axial force (N) was obtained keeping K constant. Also, forouarivalues of K the deflection at time (t)
was obtained keeping N constant. It was found that the amitefdébration decrease with increasing
foundation constant. Also as the axial force (N) increases, thecueh () of the simply supported
Bernoulli-Euler beam decreases.

The theory generated in this work can be applied to calooktinvolving prestressed or
reinforced beams often encountered in structural design and construction.
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