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 Abstract 
 

The influence of foundation and axial force on the vibration of a simply 
supported thin (Bernoulli Euler) beam, resting on a uniform foundation, 
under the action of a variable magnitude harmonic load moving with variable 
velocity is investigated in this paper. The governing equation is a fourth order 
partial differential equation. For the solution of this problem, in the first 
instance, the finite Fourier sine transformation is used to reduce the equation 
to a second order partial differential equation. The reduced equation is then 
solved using the Laplace transformation. Numerical analysis shows that the 
transverse deflection of the thin beam, resting on a uniform foundation, under 
the action of a variable magnitude harmonic load moving with variable 
velocity decreases as the foundation constant increases.  It also shows that as 
the axial force increases, the transverse deflection of the thin beam decreases. 

 
  pp 143 - 150 
 
1.0 Introduction 

Moving loads causes solid bodies to vibrate intensively, particularly at high velocities. Thus, the 
study of the behaviour of bodies subjected to moving loads has been the concern of several investigators. 
Among the earliest work in this area of study was the work of Timoshenko [1] who considered the 
problem of simply supported finite beams resting on an elastic foundation and traversed by moving loads. 
In his analysis, he assumed that the loads were moving with constant velocities along the beam. 
Furthermore, Kenny [2] took up the problem of investigating the dynamic response of infinite elastic 
beams on elastic foundation when the beam is under the influence of a dynamic load moving with 
constant speed. He included the effects of viscous damping in the governing differential equation of 
motion. More recently, Oni [3] considered the problem of a harmonic time variable concentrated force 
moving at a uniform velocity over a finite deep beam. The methods of integral transformations are used. 
In particular, the finite Fourier transform is used for the length coordinate and the laplace transform (hr 
the time coordinate. Series solution, which converges, was obtained for the deflection of’ simply 
supported beams. The analysis of the solution was carried out for various speeds of the load.  Oni [4] used 
the Galerkin method to obtain the response to several moving masses of a non-uniform beam resting on 
an elastic foundation. The effects of the elastic foundation on the transverse displacement of the non-
uniform beam were analyzed for both the moving mass and the associated moving force problems. 

Furthermore, Milormir et al [5] developed a theory describing the response of a Bernoulli-euler 
beam under an arbitrary number of concentrated moving masses. The theory is based on the Fourier 
technique and shows that, for a simply supported beam, the resonance frequency is lower with no 
corresponding decrease in maximum amplitude when the inertia is considered. 

However, the above studies, though impressive, have failed to give the effects of lateral 
reinforcements on the transverse displacement of the beam. 
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This paper, therefore, presents the effects of foundation constant and axial force on the transverse 
deflection of a thin (Bernoulli-Euler) beam, resting on a uniform foundation, under the action of a 
harmonic load moving with variable velocity. 
 
2.0 The Mathematical model 

Consider a beam under a moving load p(x,t), subjected to an axial force N, which remains parallel 
to the x-axis.  A portion of the beam is as shown below: 

 
       t 
 
 
              ( )txp ,  
 
 
 
           N      N 
 
 
           x 

Figure 1: The beam’s displacement is governed by the equation (2.6) 
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where x is the spatial co-ordinate, t is the time, 
x∂

∂
 is the partial derivative with respect to x, 

 V(x,t) is the transverse displacement, E is the Young’s modulus, N is the axial force, 
 I is the moment of inertia, µ is the mass per unit length of the beam, K is the 
 foundation constant,  oω  is the circular frequency and P(x,t) is the moving load. 

In this paper, the beam model is taken to be simply supported and hence the boundary conditions 
take the form: 

  V(0,t) = V(L,t) = 0     (2.2a) 
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where L is the length of the beam. 

For simplicity, the initial conditions shall be taken as 
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 In what follows, we shall consider the load traversing the Bernoulli-Euler beam model and 
investigate the influence of foundation constant and axial force on the vibration of the beam under a load 
moving with variable speed. 
 More specifically, we adopt the example in [3], and take our moving load to be of the form: 

( )[ ]txxtPtxP o αβδ Sin  )(),( +−=     (2.4) 

where P(t) indicate the magnitude of the load, sinα t is the variable speed term for the moving load and 
x0, β  and α  are constants. 

   xδ  
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 The function ( )xδ  is defined as 
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and is called the dirac-delta function with the property: 
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For a harmonic load, P(t) is chosen to be of the form P(t) = Pcosωt and (2.4) becomes 
  P(x,t) = P cosωtδ[x – (xo + β sin α t)]     (2.7) 

Substituting equation (2.7) into equation (1.1) we have: 
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2.1 Problem Solution 
In order to solve equation (2.8), we notice that 
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It is clear therefore that sinαt < α t since α and t are considerably small, sinαt shall therefore be 
approximated to αt in this work.  Thus equation (2.8) becomes 
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A suitable method for solving diverse problems of structural dynamics is the method of integral 
transformation. Particularly, in order to solve equation (2.10) subject to the boundary conditions (2.2a) 
and (2.2b), we subject it to a finite Fourier sine transformation given by 
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with the inverse 
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And apply the property of the dirac-delta function (x) given in equation (6). We then obtain 
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Subjecting equation (2.12) to a Laplace transformation using the initial conditions in (2.3), we have 
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Equation (2.13) can be rearranged to take the form: 
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where  
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A further rearrangement gives 
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where 
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 In order to obtain a Laplace inversion of equation (15), we adopt the following representations: 
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So that the Laplace inversion of each term of V(m,r) is obtained by applying the convolution theory 
given by 
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Thus we have 
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The Laplace inversion of equation (2.15) is thus obtained by solving the integrals (2.19), (2.20), 
(2.21) and (2.22) and substituting as appropriate into equation (2.15).  Thus we have 
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which on Fourier sine inversion becomes  
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Equation (3.32) is the response of a simply supported thin reinforced bean under the action of a 
variable magnitude harmonic force moving with variable velocity. 
 
3.0 Numerical Calculations and Discussion of Results 

For the purpose of Numerical analysis, the length of the beam is chosen to be 12.192m while the 
value EI is chosen to be 6.068 x 106 kgm3/s2.  The results are as presented in the tables below. 

Table 1 presents the deflection (V) at various times t when the foundation constant K is varied 
between 0 N/m3 and 1,000,000 N/m3.  The deflection (V) at various times t when the axial force (N) is 
chosen to be 0, 20 million and 40 million Newton respectively is presented in Table 2. 
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Table 1 

S/N T(sec) V(m) at K = 0 V(m) at K = 100,000 V(m) at K = 1,000,000 
1 0 0 0 0 
2 0.1 -1.874334E-10 -1.874296E-10 -1.873982E-10 
3 0.2 -4.503662E-10 -4.503299E-10 -4.499987E-10 
4 0.3 -4.450309E-10 -4.449137E-10 -4.438644E-10 
5 0.4 5.140222E-11 5.161094E-11 5.348322E-11 
6 0.5 1.139216E-09 1.139439E-09 1.141431E-09 
7 0.6 2.792605E-09 2.79263E-09 2.792902E-09 
8 0.7 4.871387E-09 4.870884E-09 4.866344E-09 
9 0.8 7.15235E-09 7.150851E-09 7.137346E-09 
10 0.9 9.376002E-09 9.372964E-09 9.345634E-09 
11 1.0 1.129931E-08 1.129417E-08 1.124797E-08 
12 1.1 1.274303E-08 1.273526E-08 1.26655E-08 
13 1.2 1.36235E-08 1.361267E-08 1.351547E-08 
14 1.3 1.396238E-08 1.394816E-08 1.382076E-08 
15 1.4 1.387312E-08 1.385534E-08 1.369618E-08 
16 1.5 1.352848E-08 1.350709E-08 1.33157E-08 
17 1.6 1.311735E-08 1.309236E-08 1.286907E-08 
18 1.7 1.280139E-08 1.277288E-08 1.251841E-08 
19 1.8 1.268168E-08 1.264973E-08 1.236486E-08 
20 1.9 1.278232E-08 1.274696E-08 1.243219E-08 

 
Table 2 

S/N T(sec) V(m) at N = 0 V(m) at N = 20,000,000 V(m) at N = 40,000,000 
1 0 0 0 0 
2 0.1 -1.874331E-10 -1.866118E-10 -1.857923E-10 
3 0.2 -4.503664E-10 -4.408951E-10 -4.314922E-10 
4 0.3 -4.450311E-10 -4.105296E-10 -3.765804E-10 
5 0.4 5.140199E-11 1.292244E-10 2.048364E-10 
6 0.5 1.139216E-09 1.272796E-09 1.40035E-09 
7 0.6 2.792605E-09 2.982935E-09 3.160431E-09 
8 0.7 4.871386E-09 5.105839E-09 5.317311E-09 
9 0.8 7.152348E-09 7.406051E-09 7.623628E-09 
10 0.9 9.375999E-08 9.616161E-08 9.8051E-09 
11 1.0 1.12993E-08 1.149132E-08 1.161664E-08 
12 1.1 1.274302E-08 1.285691E-08 1.289002E-08 
13 1.2 1.36235E-08 1.363919E-08 1.356396E-08 
14 1.3 1.396236-08 1.387278E-08 1.368452E-08 
15 1.4 1.38731E-08 1.368436E-08 1.339476E-08 
16 1.5 1.352846E-08 1.325743E-08 1.288765E-08 
17 1.6 1.311732E-08 1.278702E-08 1.236342E-08 
18 1.7 1.280136E-08 1.24355E-08 1.198371E-08 
19 1.8 1.268166E-08 1.229949E-08 1.18391E-08 
20 1.9 1.278228E-08 1.239487E-08 1.19359E-08 

 
Comparing the deflection at various values of the foundation constant, Table 1 shows, for fixed N 

that the transverse displacement of the beam decreases as the Foundation constant K increases. It is 
observed from Table 2 that, for fixed K the displacement response of the beam decreases as the effect of 
the axial force (N) increases. 
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4.0 Conclusion 
The influence of Foundation and axial force on the deflection of a simply supported thin 

(Bernoulli-Euler) beam under the action of moving load has been studied in this work. The beam is 
assumed to rest on a uniform foundation and the load is moving with variable velocity. 

The beam problem is solved using the Fourier sine transforms on the partial coordinate x and 
Laplace transform on the other partial coordinate t. The deflection (V) at time (t) For various values of 
axial force (N) was obtained keeping K constant. Also, for various values of K the deflection at time (t) 
was obtained keeping N constant. It was found that the amplitudes of vibration decrease with increasing 
foundation constant. Also as the axial force (N) increases, the deflection (“) of the simply supported 
Bernoulli-Euler beam decreases. 

The theory generated in this work can be applied to calculations involving prestressed or 
reinforced beams often encountered in structural design and construction. 
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