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Abstract

In this paper, the effect of variable axial forcenothe dynamic response of
elastic beam resting on elastic foundation and sedfied to concentrated
moving loads is investigated. The fourth order fiat differential equation

with variable and singular coefficients governingp¢ motion of the elastic thin
beam is solved using the Generalized Galerkin’s Mmt and the Modified

Asymptotic Method of Struble. It is established bgth Analytical solution

and Numerical analysis that, the higher the value$ axial force N and the
foundation rigidity K, the lower the response amiplies of the elastic thin
beam with variable prestress when it is under thetian of the concentrated
moving loads. Furthermore, it is found that theitical velocity for the system
under the influence of the moving force is greatéhan that under the

influence of the moving mass first approximation dnmoving mass entire
beam model. Hence, resonance is reached earligthim latter.
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1.0 Introduction

This paper is concerned with the problem of assessingffénetseof variable axial force on the
dynamic response to moving concentrated load of thin beam resting onfelastiation.

Various structures, ranging from bridges and roads to spduelese and submarines are
constantly acted upon by moving masses and hence, the problem airapitg dynamic behaviour of
elastic structures under the action of moving masses. n@artio investigators in the field of structural
dynamics is the quest for an effective and reliable method immatety determining the response of an
elastic structure under the actions of heavy masses traveraingarious speeds.

Several authors have extensively studied the flexuratwtor of prismatic or non prismatic rods,
beams, plates and shells [1, 2, 3, 4 5]. In most of these studias, bieen tacitly assumed that prestress
in beams or rods have been uniform all through the length of thecefsmmbers. The account of the
effects of axial force when it is non-uniform on the frequencies has bgkatteel. In most cases also, the
beams considered have been idealized by one whose mass is approximatelyaedligitdase in which
the moving load has mass commensurable with the mass of thie stagcture has suffered neglect.
Among the earliest progress in this area of research wdhe of Stanisic et al [6] who studied the two
dimensional vibration of plate under the actions of moving massegy. cbhsidered only the inertia term
which measures the effect of local acceleration in the directi the deflection. This work was taken up
much later by Gbadeyan and Oni [7] who studied the dynamic analysis of an élastice on an elastic
Pasternak foundation when it is under an arbitrary number of concentratselsma\ll the components of
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the inertia terms were considered and the rectangular plate svaseasto be simply supported. In a
more recent development, Oni

[8] and Gbadeyan and Idowu [9] studied the one-dimensional moving lodaalerpsothat involve axial
force effects. In their study, they assumed that presgessnstant along the length of the beam. The
more realistic beam having variable prestress and restietpstic foundation when it is under the action
of moving concentrated masses has not been considered. Evidentlgctinegprprestress varies from a
point to another along a structural member. Thus, this study considers thefeftable axial force on
the dynamic response to moving concentrated loads of a Thin Beam resting oriceladgation.

2.0 TheModd
The transverse displacement response of a thin beam under thgepakssoving concentrated
load is governed by a fourth order partial differential equation given by

£ AW (x,t) +r_n62W(x,t) 0 {N ” 6W(x,t)}

ox* ot? ox ox

(2.1)
+ KW(x,t) = Ps (x,t){l—%W(x,t)}

wherex is the position coordinate in the axial direction, t is the tl%qe, is the partial derivative with
X

respect to x,W(X,t)is the transverse displacemer®® (x,t) is the moving force, HEhesflexural

stiffness N(X) is the variable axial force, | is the moment of ineatim M is the constant mass per unit

length of the beam and K is the stiffness of the elastic beam.

The structure under consideration is assumed to be under tenefls, gesting on elastic
foundation and executing vibrations according to simple Bernoulli-Eoéam theory of flexure.
Furthermore, the beam has simple support at both ends.

Thus the boundary conditions are

WD =0=w(Ly SWOD o oWy
0X 1)
and the initial conditions of the motion are
wixo)=0= 2x0 29
The operatol© is defined as
92 %2 592
0= + 2V +V (2.4)
o2 otox  9x2

and the velocity of thé" concentrated load is denoted byand Ps (x,t) is defined as

Pr (xt) = > M;gd(x - vit) (2.5)

The time tis such thdd <tv; < L, where L is the length of the beam.
Using equations (2.4) and (2.5) in equation (2.1), the governing equation of motiothtaf@s
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g1 SWOKD) | oW (X, —i{N(x)—aW(x't)} + KW(x,t)
ox* ot2 ox oX
2 2 2 N
+ MiO_(X—Vit) aW—(ZX't)'i' 2V, 9W(x1) +Vi2 9 W(Z)(,t) = z M; gb’(x—vit) (2.6)
ot otox ox i1
As an example, let the variable axial force be defined as
3
N(xX) = No(1+ Sn%) 2.7)

where N is the average value of the axial force of the elastic beam.
When equation (2.7) is substituted into equation (2.6) after scam@angements, the equation of motion
can be rewritten as

2
g IW0e) 0% 0 M(10+158'nz—6C082m—8'n3mj OW(x,t)
ox* o2 ox| 4 L L) ox

(2.8)

FKW(x1) + Mi5(x_vit){62\g/(2x,t) ooy WO | 2 62VV(x,t)}

' oot ' a2

N
=Y M;igd(x-vt)
i=1
Equation (2.8) is a non-homogeneous partial differential equaitbrvariable coefficient. Evidently, an
exact analytical solution of the above equation does not exist.

3.0 Solution Procedure

The fourth order partial differential equation (2.8), apart fleawming variable coefficient, it is
singular. This is as a result of the presence of the Deha function in the governing equation which is
not defined at certain values of the independent variableiewn of the above, it becomes impossible to
obtain a closed form solution of the equation (2.8) by any conventiorigtiesamethod. As a result of
the foregoing difficulty, an approximate analytical method otitsmh is sought. One of the methods
suited for solving diverse problems in dynamic of structures isGhlerkin’'s method. This method
requires that the solution of equation (2.8) be of the form

n
Un(xt) =D Ym(tVm(X) (3.1)
i=1
where Vi,(X) is chosen such that all the boundary conditions stated in g&23atisfied. Since our

elastic system has simple supports at the edges x = 0 and x = L, we choose

Vin(X) = Sinm—lju (3:2)

Substituting equations (3.1) and (3.2) into equation (2.8) leads to
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Y dmsn™2y @+ 8| 2 Sn@\(m(t) N ™10 g™ _ 15" cos ™ cos TV
L T L AL T

m=1

15 G0 K Gn MR 157 G 2 cos ™R _ 6cos 2X gn TV
L L L L L L L L
+37—TCos3nXCosmnX— mnS’n3nXS mx Y (t)

L L L L L L

{(x W (OSINT + 20 T Sl ~ vt in () Cos
(3.3)
i=1

In order to determing’, (t) it is required that the expression on the left hand side ofiequ@&.3) be
orthogonal to the function

_Viz(m_sz I(x- v,t)Ym(t)SnTH—i M;gd(x-vit)=0

Vi (¥) = snkT’”‘ (3.4)
Consequently, using (3.4) in (3.3) one obtains
n
Z {HOYm(t) + (Hl + HZ)Ym(t)
m=1
N M,
+Z [H3(t)Ym(t)+2VH4(t)Ym(t) ~Vi H5(t)Ym(t)]} (3.5)
=1
N
M.
=> i He ()
iz M
where
_ krx
Ho_jo Sn —L Sn—dx (3.6)
_ ms7 K7x
Hl—EI(Tj jo Sn TSn—dx (3.7)
Hy =G -Gy +G3 -Gy -G5+Gg -Gy (3.8)
_10Ng ( mm '
( jjo Sn —s —d (3.9)
GZ:%[mﬂj J' Cos—Cos—Snk—md (3.10)
am 0 L L L
15Ng ( mmr . k7x
Gy=——| — Sn —Sn—Sin—dx 3.11
3=, [ . j fy : (311)
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2
B L 21K . MK
G4——(Tj jo Sin“=Cos— = Sin="—dx (3.12)

2
L .
Gsg —%(Mj J' CoszmSian(Snkmdx (3.13)
4 L 0 L L L
2
L .
5 —%(Mj J' CosT% Cos ™ gin X% ux (3.14)
4 0 L L L
2
7—m[—mﬂj - 3li(S'nmmSinknxdx (3.15)
4 \ L 0 L L L
L mx . kx
Ha(t) = O\x—vit)]Sn——Sn—-dx 3.16
3() = o Slx-vit)Sin=—=8n=" (3.16)
mn L mx .. k7x
Hy(t) =— . J(x—vit)Cos—— Sh——dx 3.17
4® === Slx—vit)Cos==8n=" (317)
2
_(mm\~ L . mrx . kix
H5(t)—(Tj Io A(x vlt)SnTSanx (3.18)
L
He(®) = [ 5(x—vit)9nande (3.19)

when integrals (3.6) to (3.19) are evaluated, one obtains es sgfricoupled second order ordinary
differential equations called Galerkin's equations governhg doefficients of all lower and higher
modes of the beam.

Equation (3.5) will be solved by considering only a mass moving welocity v thus, after some
simplifications and rearrangements equation (3.5) reduces to
n
> {Ym(t) + 6 Yin() +17* [Ym(t) + Sp (K, m)Ym (1) + Si(k, m)Ym (1)
m=1 (3.20)

+ S(k, M, M)Vin(t) = Sp(k, MY (®) + SoSp¥in(®)]} = “—"—f S'nkT’m
m
where ( )
2\H, +H m7wt kvt 8mvk
o :%, S =28n——8n="=, §(km) = A (3.21a)
i 16mvk(k2 -m? - nz) n7wt vemé 2

S*lk,m,n) = r T 1Cos , k,m) =

(k.m.n) nzzll Lk? = (n+m)Jk? = (n-mp?| o M =Top
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andn* = M (3.21b)
mL

equation (3.20) is the transformed equation governing the mode respoasthin beam with variable
axial force, under tensile stress and subjected to moving coateehinasses. Evidently, equation (3.20)
is not amenable to any known analytical method of solution; hanaxact analytical solution to this
equation is impossible. In what follows three special cases of equatiOh#B22Zonsidered.

3.1 The Moving Force Prestressed Thin Beam Problem.

In solving the moving force problem of equation (3.20), when theiantetm effect of the
moving mass m is neglected one obtains the classical casmmfing force problem and equation (3.20)
reduces to

d2Y(t 2Mg k7t
d”;( ) b 6BV () = _—g == (3.22)

To obtain the solution of the equation (3.22), it is subjected to a Laplaséotma defined as

(9= fooo (12 (3.23)

wheres is the Laplace parameter. Applying the initial conditions)(2fe obtains the simple algebraic
equation given by

2M a Chf
Yin(s) == 5> 0 (3.24)
MLaks | sS“+a“ s +aﬁf
where
kv
=— 3.25
1 (3.25)

Thus, the problem reduces to that of obtaining the Laplacesioveof (3.24). To do this we adopt the
following representations:

f(9=——

69 =5 (3.26)

S +aﬁf 2 +a

so that the Laplace inversion ¥f,(S) is the convolution off (s) and g(s) defined as

f(s)0g(s) = j:) f (t - u)g(u)du (3.27)
In view of (3.27),Yy(t) is expressed as
v (1) = 219 j‘ Sinay (t —u)Sinaudu (3.28)
mLagy 70
Equation (3.28) after some rearrangements takes the form
m(t)—_ Mg [I aCosaht + 1pSnagst — 1 Cosast + | g SNy t (3.30)
ML
where
t t
I 4 =j0 Cos(a)nf +a)udu, Iy :Io Sn(a)nf +a)udu, (3.31)
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and

t t

lc = jo Cos(a = G )udu , g = jo Sn(a = Gt )udu (3.32)

Evaluating integrals in (3.31) and (3.32), one obtains
Sn(ay +a)t (Cos(aps +a)t -1 Sn(a — app )t

lg=—————, lp=- , legm—m——— (3.33)

Ghi T Ght T a — Ghf
and

- t-1
g = - (Cos(ar = ey )t -1) (3.34)
a — Ght

Substituting (3.33) and (3.34) into equation (3.30), after some siogpidns and rearrangements
we obtain an expression fof,(t) as

m _2(Hy+ Hz)j " mL

ML Gy [02 -
mL (3.35)
_( [2(Hy + Hz)jgnmj
mL
Thus, in view of equations (3.1) and (3.2), one obtains
n *
_ R 2(H;+H»
t) = —==2 |t
Up(X,t) Z_: S M+ H,) asin| [r_nL )
m=l | o B U LYY
mL (3.36)
- 2H1_—+H2 Snat Sn%
\ mL L
where
R = 2Mg (3.37)

mL /270_'1_%)
mL

Equation (3.36) represents the transverse-displacement responsalastes thin beam under the passage
of moving concentrated loads due to moving force.

3.2 The Moving Mass- First Approximation of prestressed thin beam problem.
If we consider only the linear inertia term, equation (3.20) after somamgaments becomes
d2Yo,(t o k7wt
—n;() + VEAYm(t) = PFeaS n—— (3.38)
X
where
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Cvﬁf _ v2m2n2

2
yEa= L (3.39)
1+n
and
* 2Mg
Pea mL(1+/7) ( )

This model represents an approximation to the moving load problemashefed terms are neglected.
The general solution of equation (3.38) is directly analogous tatiequ(3.22). Applying the initial
condition (2.3) one obtains

_ i
Y (t) = as Snat
m Cuﬁ v2m2n2
f2
Q2 - L
1+n
WP _v2m2772
nf 2
- L Snat S’nM (3.41)
1+n L
Thus, by equation (3.1), we have
(bfz,f _v2m2n2
Up(xt) = Zn: FEA ——| asin L2 | (3.42)
m=1 aﬁ _V m 772 1+,7
f 2
Q- L

1+n

3.3 The Moving M ass-Entire Equation of Prestressed Thin Beam Problem.

The next attempt is to solve the entire coupled moving prabllem. An exact closed form
solution to this equation is not possible. Thus, to solve equation (3v20jesort to the analytical
solution technique which is a modification of the asymptotic metticgtruble. This technique requires
that the equation (3.20) be rewritten in the form

*

v Ai(n,t,77) | Ax(nt,n) _ P krat

Yo (1) + —————= Y (1) + ———=Y (1) = Sn 3.43

O omen ™0 agmen ™ T aomen ST L (343
where

Ag(m,t,7) = 1+/7(1+ Zgnggnkamj (3.44)
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0 2_ .2 2
8mvk 16mvk(k m~—n ) nmtJ (3.45)

Al(n’t’”):”(ﬂmr = L[kZ_(n+m)2J[k2 (n- m)2JC°°

2]72 2772

vem v m mmt krat
As(n,t,n) = + Sn
2(nt) = oy n{ oL . : 4 ]
Specifically, by means of this technique, one seeks the modifesgudncy corresponding to the
frequency of the free system due to the presence of the mogitig An equivalent free system operator
defined by the modified frequency then replaces equation (3.43). Weuset the right hand side of

(3.43) to zero and consider a param@ig 1for any arbitrary mass ratip* defined as

(3.46)

_n*
Io = 1+p* (3.47)
which implies that,
M =1+ O(rg) (3.48)
and
! r—— {1 To(1+ ogn 7™ Snkﬂj +o( ) } (3.49)
1+/7*(1+28'nmLS'nLj L L
Using (3.53), equation (3.47) becomes
Voo(®) + 10l S (k) + S* (kM) Nin(®) + |y — 06y @+ Sp(k,m)
2rpLg ., K (3.50)
~ 1o(Sa(km) + So(k WSy (k, MNp(®)] = 2209 g KM

L

when 7 is set to zero in equation (3.50), a situation corresponding to skearcavhich the inertia effect
of the mass of the system is regarded as negligible is obtained. In sacthessolution is of the form

Yo (t) = CE,COs[cq.,ft - q}J] (3.51)
WhereCS, @yt and @ are constants. Furthermore, gs<1, the Struble’s technique requires that the
solution of equation (3.50) be of the form
Y (t) = Q(m,t)Cos[a,hft - Q(m,t)] + oYy (t) + o(rg) (3.52)
where Q(m,t) and Q(m,t) are slowly varying functions of time.

In order to obtain the modified frequency, equation (3.52) and itgatiggs are substituted into
the homogeneous part of the equation (3.50). Thereafter, we exthadghervariational part of the
equation describing the behaviour @{m,t) and Q(m,t) during the motion of the mass. Thus, making

this substitution and neglecting terms that do not contribute to theimaala¢quations we obtain
— 20 Q(m,t)Sin[ahft - Q(m,t)J +2Q(m,t) ey Q(m,t)Cos[ahft - Q(m,t)]

- (K, M)Q(M )k Sinfeny t ~ A(m.t)] - ey 7oQm ) Coslaget - A(mit)] (3.53)

- 19, (K, m)Q(m,t)Cos[cuhft - Q(m,t)] =0

to O(Z’O) only.
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The variational equations of our problem are obtained by settindficamds of
Sin[whft - Q(m,t)] and Cso[a)nft - Q(m,t)] in equation (3.53) to zero respectively. Thus, we have
= 263 Q(M,t) — Sy(k, M)cake 76Q(M,) = 0 (3.54)
and
2Q(M,t) ks QM) - af QMY ~ 7oSy (k. MQ(Mt) = 0 (3.55)
Thus, equations (3.54) and (3.55) respectively lead to
Qmb) _ _Si(k,mrg

(3.56)
Q(m,t) 2
and
+ Sy (k,
oty = 10t + S2 (kMo -
20
Solving equations (3.60) and (3.61) respectively, one obtains
_Sikmzg
Q(mt)=C*e 2 (3.58)
and
+ K,
Q(myt) = Tolehs + m)Jme (3.59)
20
whereC* and/,,are constants. Thus,
_Sitk,m7g
Ynh(t)=C*e 2 Cos[a,hft—wm] (3.60)
where
_ 0|, So(k,m)
G = |1 1+ == (3.61)
20 4

is called the modified natural frequency representing tlgpiénecy of the free system due to the presence
of the moving mass. Thus, the homogeneous part of equation (3.50) can be written as

d Ym(t) + s Yoo (t) =0 (3.62)

Hence, equation (3.50) finally takes the form

d ;(m(t) + Yoy (t)__Zrog k’f’t (3.63)
t2

Evidently, equation (3.63) is analogous to equation (3.22); thus, sagusation (3.63) in conjunction
with the initial conditions one obtains
(3.64)
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Yn(t) = 2709 asina| @y 1—%[1+—52(k’m) t

mila? —wrznf wrzlf
(3.64)
K, :
—(%{1—@ 1+ SZ' rﬂ Snat
2 o
In view of equation (3.1) and (3.2) we therefore obtain
n
Up(xt)=> | — 22Tog asin(wnf 1-10 1+M t
m=1 | M@ _aﬁf 2 Wnf
(3.65)

2 2

= | @t 1-10 1_—82(k,m) Sna | |gn%
Wt L

which represents the transverse displacement response ed@stit Thin beam under the passage of
moving concentrated loads due to moving mass.

4.0 Discussion of the Closed Form Solution

In a work such as this, it is imperative that the resonance phenomenontigatedsbecause the
transverse displacement of elastic solid structures may grthwui bound.
Equation (3.36) clearly shows that the prestressed elastim Ipesting on elastic foundation and
transverse by a moving force will grow without bound whenever

C"ﬁf =a® (4.10)
while equation (3.42) depicts that the same beam under the action of a mosggmniyathe linear inertia
terms are considered experiences resonance when

Véa=a’ (4.11)
Similarly, equation (3.65) shows that the prestressed beam undestitire gf the entire moving mass
when no term is neglected experiences resonance whenever

W =a? (4.12)
For the problem of moving mass first approximation of prestce&uler-Bernoulli beam problem the
natural frequency is given by

P - vime

2
yEa= L (4.13)

which implies

h = (4.14)
1 e — v2m2772
RV P
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but, in the case of the Moving mass when no term is neglecthd transformed governing equation the
modified natural frequency is obtained as

K,
W = Ght 1—% 14+ 2 m (4.15)

ahi

which implies

0'2

Gy = (4.16)
1-70] 14 2(km)

2 ahy

Thus, from equations (4.11) and (4.14) and equations (4.12) and (4id@ggily deduced, that for the
same natural frequency, the critical speed for the system consistinglafstic beam resting on an elastic
foundation and traversed by a moving force is greater tharoftltlheé moving mass first approximation
and moving mass when no term is neglected. Hence, reson@eaehsd earlier in the case of a moving
mass problem.

5.0 Commentson the Numerical Resultsand Analysis.
In this section, we illustrate the theory presented in this papeerically. Elastic thin beam of

. . —4 37
length 12.2m is considered, other parameters used are statetloas,fy =2x10 "m, S :7,

El
— = 220cm4/52 and the ratio of the mass of the load to the mass of the se@u2b6i. The values of

U

axial force N and subgrade K, are between 0 and 3,500,000 N and35886000N / m3 respectively.

Figures 1 depicts the deflection profiles of the elastic Beaith a non-uniform axial force under the
actions of concentrated moving loads for various values of fotige N and for fixed K. The figure
shows that as N increases, response amplitudes of the medttesam decrease. Similarly, as the
foundation modulli K increases, for fixed value of N, the displacemesgonse of the moving force of
the simply supported uniform beams subjected to moving heavy masses dasr&a®aen in Figure 2.

N=0
— - - — N=35000
37 — — — N=350000
------ N=3500000

u(L/2.t)

time(t) sec
Figure 1. Thetransverse displacement response for the moving for ce of the prestressed thin beam for various
values of N and fixed foundation moduli K = 55000N /m°.
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K=0

3 —--— K=35000
— — — K=350000
24 K=3500000

u(L/2.t)

time(t) sec

Figure 2: The displacement profile for the moving for ce of the prestressed thin beam for various values of K
and fixed value of axial force N = 35000N.

6 ——N=0
— - — - N=35000

— — = N=350000
------ N=3500000

time(t) sec

Figure 3: Thetransverse displacement response for the moving massfirst approximation of uniform thin beam for
various values of N and fixed foundation moduli K= 55000 N /m?.
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—K=0

— - - —K=55000

— — — K=550000
""" K=5500000

U(L/2,t)
o

time(t) sec

Figure 4: The displacement profile for the moving massfirst approximation of the prestressed

for variousvalues of K and fixed value of axial force N = 35000N.

10

Moving force model
— — — Moving mass first approximation
------ Moving mass model

0.5

time(t) sec

Figure 5. Comparison of the moving force, moving mass first approximation and the entire moving mass of the
prestressed thin beam for fixed value of N = 35000N and foundation moduli K= 55000.
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10

——N=0
— -+ = N=35000
61 — — — N=350000
------ N=3500000

-10

time(t) sec

Figure 6: Thetransverse displacement response for the moving mass entire of the prestressed thin beam for various

U(L2,)

-10

values of N and fixed foundation moduli K= 55000 N / m3.

10

K=0 !
— - - — K=55000 ’
6 — — — K=550000
------ K=5500000

time(t) sec

Figure7: Thedisplacement profile for the moving massentire of the prestressed thin beam for various values of

Transverse motions under heavy loads

foundation moduli K and fixed value of axial force N= 35000N.
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In Figure 3, the transverse displacement of moving masafimoximation case for Simply-
Supported uniform beam traversed by a moving load is displayed. It is clearfiysedhe figure that as
N increases for fixed value of the foundation stiffness Ktthasverse displacement response of the
prestressed beam decrease. In the same manner, as the foustiffiiess K increases for fixed N =
35,00(N figure 4 shows that the transverse displacement of the thsticelbeam with finite span
decrease.

Furthermore figure 5 shows the transverse displacement of moving force,ngnaviass first
approximation and moving mass cases for Simply-Supported uniformtb@zersed by moving load for

fixed N = 35,0000 and K = 55,00(N/m3. Clearly, the response amplitudes of moving mass first
approximation and moving mass when no term is neglected are higirethiat of the moving force.
This result shows that it is erroneous and misleading % @al moving force model as a save
approximation to a moving mass model.

In a similar manner, the deflection profiles for the movingssnof the Simply Supported,
Bernoulli-Euler beams under the actions of moving concentrated flmadarious values of axial force N
and for fixed K are displayed in Figure 6. It is seen from tgeré that as N increases response
amplitudes of the prestressed Bernoulli-Euler beam decrdasEigure 7, it is equally shown that for
various values of foundation moduli K and fixed value of N = 35N00@ response amplitudes of the
moving mass of the elastic beam under consideration decrease.

6.0 Conclusions
In this paper, analytical solution has been obtained for theamdig response to moving
concentrated load of Bernoulli-Euler beam resting on elastic ftiondarhe Generalized Galerkin’s
Method and the modified asymptotic method of Struble were usedhis analytical technique has
advantage over numerical method of solution in the sense that thersolotained by it sheds more light
on vital information about dynamical system.
Finally, Analytical solution and Numerical analysis in plotted curshsw that:
[ resonance is reached earlier in a system traversed bynbaw¢ing mass first approximation
and moving mass entire than in that under the action of a moving force
ii. when the axial force N is fixed, the displacements afndorm Bernoulli-Euler beam resting
on elastic foundation and traversed by moving concentrated loadaskecies the foundation
rigidity K increases.
iii. as the axial force N increases, the amplitudea oihiform beam under the actions of moving
concentrated load decrease.
iv relying on moving force model as a good approximation to movigsnmodel is quite
misleading and tragic.
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