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 Abstract 
 

In this paper, the effect of variable axial force on the dynamic response of 
elastic beam resting on elastic foundation and subjected to concentrated 
moving loads is investigated.  The fourth order partial differential equation 
with variable and singular coefficients governing the motion of the elastic thin 
beam is solved using the Generalized Galerkin’s Method and the Modified 
Asymptotic Method of Struble.  It is established by both Analytical solution 
and Numerical analysis that, the higher the values of axial force N and the 
foundation rigidity K, the lower the response amplitudes of the elastic thin 
beam with variable prestress when it is under the action of the concentrated 
moving loads.  Furthermore, it is found that the critical velocity for the system 
under the influence of the moving force is greater than that under the 
influence of the moving mass first approximation and moving mass entire 
beam model.  Hence, resonance is reached earlier in the latter. 
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1.0 Introduction 
 This paper is concerned with the problem of assessing the effects of variable axial force on the 
dynamic response to moving concentrated load of thin beam resting on elastic foundation. 
 Various structures, ranging from bridges and roads to space vehicles and submarines are 
constantly acted upon by moving masses and hence, the problem of analyzing the dynamic behaviour of 
elastic structures under the action of moving masses.  Pertinent to investigators in the field of structural 
dynamics is the quest for an effective and reliable method in accurately determining the response of an 
elastic structure under the actions of heavy masses traversing it at various speeds. 
 Several authors have extensively studied the flexural vibration of prismatic or non prismatic rods, 
beams, plates and shells [1, 2, 3, 4 5].  In most of these studies, it has been tacitly assumed that prestress 
in beams or rods have been uniform all through the length of the elastic members.  The account of the 
effects of axial force when it is non-uniform on the frequencies has been neglected. In most cases also, the 
beams considered have been idealized by one whose mass is approximately negligible.  The case in which 
the moving load has mass commensurable with the mass of the elastic structure has suffered neglect.  
Among the earliest progress in this area of research is the work of Stanisic et al [6] who studied the two 
dimensional vibration of plate under the actions of moving masses.  They considered only the inertia term 
which measures the effect of local acceleration in the direction of the deflection.  This work was taken up 
much later by Gbadeyan and Oni [7] who studied the dynamic analysis of an elastic structure on an elastic 
Pasternak foundation when it is under an arbitrary number of concentrated masses.  All the components of 
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the inertia terms were considered and the rectangular plate was assumed to be simply supported.   In a 
more recent development, Oni  
 
 
 
[8] and Gbadeyan and Idowu [9] studied the one-dimensional moving loads problems that involve axial 
force effects.  In their study, they assumed that prestress is constant along the length of the beam.  The 
more realistic beam having variable prestress and resting on elastic foundation when it is under the action 
of moving concentrated masses has not been considered.  Evidently, in practice, prestress varies from a 
point to another along a structural member.  Thus, this study considers the effect of variable axial force on 
the dynamic response to moving concentrated loads of a Thin Beam resting on elastic foundation. 
  
2.0 The Model 
 The transverse displacement response of a thin beam under the passage of moving concentrated 
load is governed by a fourth order partial differential equation given by 








 Θ−=+










∂
∂

∂
∂−

∂
∂+

∂
∂

),(1),(),(

),(
)(

),(),(
2

2

4

4

txW
g

txPtxKW

x

txW
xN

xt

txW
m

x

txW
EI

f

 (2.1) 

where x is the position coordinate in the axial direction, t is the time, 
x∂

∂
 is the partial derivative with 

respect to x, ),( txW is the transverse displacement, is the moving force, EI is the flexural 

stiffness )(xN is the variable axial force, I is the moment of inertia and m  is the constant mass per unit 
length of the beam and K is the stiffness of the elastic beam. 
 The structure under consideration is assumed to be under tensile stress, resting on elastic 
foundation and executing vibrations according to simple Bernoulli-Euler beam theory of flexure.  
Furthermore, the beam has simple support at both ends. 
 Thus the boundary conditions are 
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and the initial conditions of the motion are  

       (2.3) 

The operator Θ  is defined as  
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and the velocity of the ith concentrated load is denoted by vi. and ),( txPf  is defined as 

    ( ) ( )∑ −= tvxgMtxP iif δ,     (2.5) 

The time t is such that Ltvi ≤≤0 , where L is the length of the beam. 

Using equations (2.4) and (2.5) in equation (2.1), the governing equation of motion takes the form 
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As an example, let the variable axial force be defined as  
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where N0 is the average value of the axial force of the elastic beam. 
When equation (2.7) is substituted into equation (2.6) after some rearrangements, the equation of motion 
can be rewritten as 
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Equation (2.8) is a non-homogeneous partial differential equation with variable coefficient.  Evidently, an 
exact analytical solution of the above equation does not exist. 
 
3.0 Solution Procedure 
 The fourth order partial differential equation (2.8), apart from having variable coefficient, it is 
singular.  This is as a result of the presence of the Dirac delta function in the governing equation which is 
not defined at certain values of the independent variable.  In view of the above, it becomes impossible to 
obtain a closed form solution of the equation (2.8) by any conventional analytical method.  As a result of 
the foregoing difficulty, an approximate analytical method of solution is sought.  One of the methods 
suited for solving diverse problems in dynamic of structures is the Galerkin’s method.  This method 
requires that the solution of equation (2.8) be of the form 
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where )(xVm  is chosen such that all the boundary conditions stated in (2.2) are satisfied.  Since our 

elastic system has simple supports at the edges x = 0 and x = L, we choose  
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Substituting equations (3.1) and (3.2) into equation (2.8) leads to 
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In order to determine )(tYm  it is required that the expression on the left hand side of equation (3.3) be 

orthogonal to the function 
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Consequently, using (3.4) in (3.3) one obtains 
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where 
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when integrals (3.6) to (3.19) are evaluated, one obtains a series of coupled second order ordinary 
differential equations called Galerkin’s equations governing the coefficients of all lower and higher 
modes of the beam. 
 

Equation (3.5) will be solved by considering only a mass moving with velocity v thus, after some 
simplifications and rearrangements equation (3.5) reduces to  
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and 
Lm

M=*η           (3.21b) 

 
equation (3.20) is the transformed equation governing the mode response of a thin beam with variable 
axial force, under tensile stress and subjected to moving concentrated masses.  Evidently, equation (3.20) 
is not amenable to any known analytical method of solution; hence an exact analytical solution to this 
equation is impossible.  In what follows three special cases of equation (3.20) are considered. 
 
3.1 The Moving Force Prestressed Thin Beam Problem. 
 In solving the moving force problem of equation (3.20), when the inertia term effect of the 
moving mass m is neglected one obtains the classical case of a moving force problem and equation (3.20) 
reduces to  
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To obtain the solution of the equation (3.22), it is subjected to a Laplace transform defined as  
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where s is the Laplace parameter.  Applying the initial conditions (2.3), one obtains the simple algebraic 
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Equation (3.28) after some rearrangements takes the form 
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Evaluating integrals in (3.31) and (3.32), one obtains 
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Substituting (3.33) and (3.34) into equation (3.30), after some simplifications and rearrangements 
we obtain an expression for )(tYm as 
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Thus, in view of equations (3.1) and (3.2), one obtains 
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Equation (3.36) represents the transverse-displacement response of an elastic thin beam under the passage 
of moving concentrated loads due to moving force. 
 
 
3.2 The Moving Mass- First Approximation of prestressed thin beam problem. 
 If we consider only the linear inertia term, equation (3.20) after some rearrangements becomes 
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This model represents an approximation to the moving load problem when coupled terms are neglected.  
The general solution of equation (3.38) is directly analogous to equation (3.22).  Applying the initial 
condition (2.3) one obtains 
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Thus, by equation (3.1), we have 
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3.3 The Moving Mass-Entire Equation of Prestressed Thin Beam Problem. 
 The next attempt is to solve the entire coupled moving load problem.  An exact closed form 
solution to this equation is not possible.  Thus, to solve equation (3.20), we resort to the analytical 
solution technique which is a modification of the asymptotic method of Struble.  This technique requires 
that the equation (3.20) be rewritten in the form 
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Specifically, by means of this technique, one seeks the modified frequency corresponding to the 
frequency of the free system due to the presence of the moving load.  An equivalent free system operator 
defined by the modified frequency then replaces equation (3.43).  Thus, we set the right hand side of 
(3.43) to zero and consider a parameter 10 <τ for any arbitrary mass ratio *η  defined as 
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Using (3.53), equation (3.47) becomes 
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when 0τ is set to zero in equation (3.50), a situation corresponding to the case in which the inertia effect 

of the mass of the system is regarded as negligible is obtained.  In such case, the solution is of the form 
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solution of equation (3.50) be of the form 
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to ( )0τO  only. 
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 The variational equations of our problem are obtained by setting coefficients of 
[ ]),( tmtSin nf Ω−ω  and [ ]),( tmtCso nf Ω−ω  in equation (3.53) to zero respectively.  Thus, we have 

  0),(),(),(2 01 =−− tmQmkStmQ nfnf τωω &    (3.54) 

and 

 0),(),(),(),(),(2 200
2 =−−Ω tmQmkStmQtmtmQ nfnf ττωω &   (3.55) 

Thus, equations (3.54) and (3.55) respectively lead to 
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Solving equations (3.60) and (3.61) respectively, one obtains 
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where *C and mψ are constants.  Thus, 
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is called the modified natural frequency representing the frequency of the free system due to the presence 
of the moving mass.  Thus, the homogeneous part of equation (3.50) can be written as 
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2
=+ tY
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mmf
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Hence, equation (3.50) finally takes the form 
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Evidently, equation (3.63) is analogous to equation (3.22); thus, solving equation (3.63) in conjunction 
with the initial conditions one obtains 
(3.64) 
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In view of equation (3.1) and (3.2) we therefore obtain 

   (3.65) 

which represents the transverse displacement response of an elastic Thin beam under the passage of 
moving concentrated loads due to moving mass. 
 
4.0 Discussion of the Closed Form Solution 
 In a work such as this, it is imperative that the resonance phenomenon is investigated, because the 
transverse displacement of elastic solid structures may grow without bound. 
Equation (3.36) clearly shows that the prestressed elastic beam resting on elastic foundation and 
transverse by a moving force will grow without bound whenever 

    22 αω =fn       (4.10) 

while equation (3.42) depicts that the same beam under the action of a moving mass only the linear inertia 
terms are considered experiences resonance when 

    22 αγ =FA      (4.11) 
Similarly, equation (3.65) shows that the prestressed beam under the action of the entire moving mass 
when no term is neglected experiences resonance whenever 
 
 

    22 αω =fm      (4.12) 

For the problem of moving mass first approximation of prestressed Euler-Bernoulli beam problem the 
natural frequency is given by 
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but, in the case of the Moving mass when no term is neglected in the transformed governing equation the 
modified natural frequency is obtained as 
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which implies 
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Thus, from equations (4.11) and (4.14) and equations (4.12) and (4.16) it is easily deduced, that for the 
same natural frequency, the critical speed for the system consisting of an elastic beam resting on an elastic 
foundation and traversed by a moving force is greater than that of the moving mass first approximation 
and moving mass when no term is neglected.  Hence, resonance is reached earlier in the case of a moving 
mass problem. 
 
5.0 Comments on the Numerical Results and Analysis. 
 In this section, we illustrate the theory presented in this paper numerically. Elastic thin beam of 

length 12.2m is considered, other parameters used are stated as follows, m4102 −×=γ , 
4

3π
β = , 

24 /2200 sm
EI =
µ

 and the ratio of the mass of the load to the mass of the beam is 0.25.  The values of 

axial force N and subgrade K, are between 0 and 3,500,000 N and 0 and 3/000,5500 mN  respectively.  
Figures 1 depicts the deflection profiles of the elastic beams with a non-uniform axial force under the 
actions of concentrated moving loads for various values of axial force N and for fixed K.  The figure 
shows that as N increases, response amplitudes of the prestressed beam decrease.  Similarly, as the 
foundation modulli K increases, for fixed value of N, the displacement response of the moving force of 
the simply supported uniform beams subjected to moving heavy masses decrease as shown in Figure 2.  
 

 
Figure 1: The transverse displacement response for the moving force of the prestressed thin beam for various 

values of N and fixed foundation moduli K = 3/55000 mN . 
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Figure 2: The displacement profile for the moving force of the prestressed thin beam for various values of K 

and fixed value of axial force N = 35000N. 

 
Figure 3: The transverse displacement response for the moving mass first approximation of uniform thin beam for 

various values of N and fixed foundation moduli K= 55000
3/ mN . 
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Figure 4: The displacement profile for the moving mass first approximation of the prestressed 
for various values of K and fixed value of  axial force N = 35000N. 

 

 
 

Figure  5. Comparison of the moving force, moving mass first approximation and the entire moving mass of the 
prestressed thin beam for fixed value of N  = 35000N and foundation moduli K= 55000. 
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Figure 6: The transverse displacement response for the moving mass entire of  the prestressed thin beam for various 

values of N and fixed foundation moduli K= 55000
3/ mN . 

 
Figure 7:  The displacement profile for the moving mass entire of  the prestressed thin beam for various values of 

foundation moduli K and fixed value of axial force N= 35000N. 
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 In Figure 3,   the transverse displacement of moving mass first approximation case for Simply-
Supported uniform beam traversed by a moving load is displayed.  It is clearly seen from the figure that as 
N increases for fixed value of the foundation stiffness K the transverse displacement response of the 
prestressed beam decrease.  In the same manner, as the foundation stiffness K increases for fixed N = 
35,000N figure 4 shows that the transverse displacement of the thin elastic beam with finite span 
decrease. 
 Furthermore, figure 5 shows the transverse displacement of moving force, moving mass first 
approximation and moving mass cases for Simply-Supported uniform beam traversed by moving load for 

fixed N = 35,000N and K = 55,000 3/ mN .  Clearly, the response amplitudes of moving mass first 
approximation and moving mass when no term is neglected are higher than that of the moving force.   
This result shows that it is erroneous and misleading to rely on moving force model as a save 
approximation to a moving mass model.   
 In a similar manner, the deflection profiles for the moving mass of the Simply Supported, 
Bernoulli-Euler beams under the actions of moving concentrated loads for various values of axial force N 
and for fixed K are displayed in Figure 6.  It is seen from the figure that as N increases response 
amplitudes of the prestressed Bernoulli-Euler beam decrease.  In Figure 7, it is equally shown that for 
various values of foundation moduli K and fixed value of N = 35, 000N the response amplitudes of the 
moving mass of the elastic beam under consideration decrease. 
 
6.0 Conclusions 
 In this paper, analytical solution has been obtained for the dynamic response to moving 
concentrated load of Bernoulli-Euler beam resting on elastic foundation. The Generalized Galerkin’s 
Method and the modified asymptotic method of Struble were used.    This analytical technique has 
advantage over numerical method of solution in the sense that the solution obtained by it sheds more light 
on vital information about dynamical system.   

Finally, Analytical solution and Numerical analysis in plotted curves, show that: 
i resonance is reached earlier in a system traversed by both moving mass first approximation 
 and moving mass entire than in that under the action of a moving force 
ii. when the axial force N is fixed, the displacements of a uniform Bernoulli-Euler beam resting 
 on elastic foundation and traversed by moving concentrated load decrease, as the foundation 
 rigidity K increases. 
iii. as the axial force N increases, the amplitudes of a uniform beam under the actions of moving 
 concentrated load decrease.  
iv relying on moving force model as a good approximation to moving mass model is quite 
 misleading and tragic. 
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