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Abstract

This paper investigates the dynamics behaviour of non-uniform Bernoulli-
Euler beams subjected to concentrated loads [Iravelling at variable velocities.
The solution technique is based on the Generalized Galerkin Method and the
use of the generating function of the Bessel function type. The results show
that, for all the illustrative examples considered, for the same natural
frequency, the critical speed for the system consisting of a non-uniform beam
traversed by a force moving at a non-uniform velocity is greater than that of
the corresponding moving mass problem. It was also found that, for fixed
axial force, an increase in foundation moduli reduces the response amplitudes
of the dynamical system. Furthermore, it was shown that the transverse-
displacement amplitude of a clamped-clamped non-uniform Bernoulli-Euler
beam traversed by a load moving at variable velocities is lower than that of the
cantilever. The response amplitude of the same dynamical systems which is
simply supported is higher than those which consist of clamped-clamped or
clamped-free (Cantilever) end conditions. Finally, an increase in the values
of foundation moduli and axial force reduces the critical speed for all variants
of the boundary conditions

pp. 79 - 102

1.0 Introduction

Studies in structural dynamics dealing with moving loads on ésidge enormous and have been
enriched in the last few decades by the development ofdpigéd railway networks in the developed
countries. Similarly, there exist remarkable advances iwsranches of transport. These advances
are characterized by increasingly higher speeds and weighehimles. Hence, structures and media
over or in which the vehicles move have been subjected tdivisaand dynamic stresses far larger than
ever before. Thus, there is the need for continuous study of llagiber of bodies subjected to moving
loads. Such a study will, for instance, provide a safer and emmm@omic design of structures on which
the loads move.

In most of thestudies available in literature, such as the work of Sadiku aighdlz [1], Oni
[2], Gbadeyan and Oni [3], Huang and Thambiratrian [4] , Lee anfpNédams [6 ], Chen and Li [7],
Savin [8], Rao [9], Shadnam et al [10], the scope has bedéedifil] to structural members having
uniform cross-sections whether the inertia of the moving Isadmsidered or not. The speeds at which
these loads travel have also been idealized to be uniform. iddess, for practical purposes, these are
not so. In reality the cross-sections of structural membets asi bridge, girders, hull of ships, concrete
slabs etc are often non-prismatic and the velocity of the vadsh move over these elastic solid bodies
are often non-uniform.

Among recent studies where non-uniform structural members Ibese subjected to heavy
masses is the attempt of Oni [12] who investigated the resmdrsenon-uniform beam resting on an
elastic foundation to several moving masses. The deflectitire afon-uniform beam was calculated for
several values of foundation moduli and shown graphically as a functioneof ke found that
the response amplitudes of both moving force and moving mass problems defitteas@easing
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foundation constant. However, his method of solution was limited to simply supported enbosndi
more elegant method was presented by Oni and Awodola [13] to dssedsration under a moving load
of a non-uniform Rayleigh beam on variable elastic foundation. THmitpe is based on the
Generalized Galerkin's Method and Struble’s asymptotic technigd@ important feature of this
technique is that it can handle this class of problem fovaalants of classical boundary conditions.
Nonetheless, the load speed here was assumed to be uniform.

Thus, this work is concerned with the dynamic behaviour of non-umiBarnoulli-Euler beams
subjected to concentrated loads travelling at variable ¥isci The main objective of this study is to
obtain an analytical solution to this problem. Numericalymmawill be carried out and results in plotted
curves will be presented.

20 Formulation of the Problem
A non-uniform beam is considered. A relatively large massvith considerable inertia is
assumed to strike at time t = 0 and travel across it at a variabletyslach that the motion of the contact

point of the moving mass is given tX(p = f(t). The beam’s properties such as moment of inertia I(x)
and the mass per unit length of the beafx) vary along the span L of the beam. The equation of
motion with damping neglected, is given by the fourth order partial diffategjuation [11,14].
2 2
92 AAV/(x, t)} RLAZC IR ER)
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wherex is the spatial coordinate, t is the tinw§x,t) is the Transverse Displacement of the bears, the
Young’s Modulus](x) is the variable Moment of inertigy(X) is the variable mass per unit length of the

beam, N is the axial force, K is the elastic foundation constant and
P = Mg (whereg is the acceleration due to gravity). The boundary conditions o$ttbeture under
consideration will be stated later under illustrative exampl€he initial conditions without any loss of

oV (x,0)

generality are taken asV (x,0) =0 = o

(2.2)

f
To get% which is the velocity of the moving load, we adopt the examp]@4hand set the distance

function as f(t) = (X, +)anpt). (2.3)

where X is the equilibrium position of the longitudinally oscillatilegd, y is the longitudinal amplitude
of oscillation of the load ang3 is the longitudinal frequency of the load. We also adopt the gram
[13] and takd(x) and p(X) to be of the form

3
1 (x) = |O[1+ Sn%) (2.4)

and HU(X) = ,uo(1+ Sin%j (2.5)
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Substituting equations (2.4 ) and (2.5) in equation (2.1) one obtains
2

1 Eloa— (10+158in— - 6C052—m Sin?ﬁ() OV (x1)

4 ax L L L ax

0V (xt) _ OV (XY, KO
ax? ax? ’ (2.6)

+M5[X_(Xo+ys.nﬂt)]{azv(x CRYCD P ﬁtaz\/(x 9 4 (c0s)? BZV(;(,t)

0Xx

+ /.10(14' SnTj

_ yBSin ﬂt"v(x”} Palx~(x +)anpt)]

3.0  Solution Procedures

It is evident that an exact closed form solution of the padifferential equation (2.6) is
impossible. Thus, we generalize the Galerkin’s Method desciibe 2] and make use of this to reduce
the partial differential equation to a sequence of ordinargrdifitial equations. Thus, a solution of the
form

n
Vi(%,1) = D7 YU m(x) (3.1)
m=1
is sought wherdJ _(X)is chosen such that pertinent boundary conditions are satidfigdation (3.1)
when substituted into the equation (2.6) yields

Noj1_ 92 27K 37K
2{4506 2[1(U}’n(x)+158nT () - GCOSTU () - Sn—U}’n( )} ()
M=1

= NUP(9¥in(®) + KU () ¥in(®) + /Jo[U m() +Um(¥)S n%}\?m(t) 3.2)

+ MO[x~ (3 + 8B Urm(X)Vin (1) ++ 24BC0FBHU 1 ()¥in()
+ (yBCOSBLPU (X ¥in(®) = yB2SINBU (¥ )] - PI[x— (0 + )&inBt) = 0

An appropriate selection of functions for beam problems are lbeatle shapes. Thus, thd normal
mode of vibration of a uniform beam [11]

Umn(x) = sin)l—’l‘_”x+ Aﬂcos)l%x+ Bmsinh/‘—rli‘x+cmcosh/1%x (3.3)

is chosen such that the pertinent boundary conditions are satisfi€&13)Ind,,is the mode number. A

Bm Cn are constants which are obtained by substituting (3.3) into themjsge boundary conditions.
(see Section 6).

4.0 Operational Simplification.
By applying the Generalized Galerkin's Method (GGM) of (3.1), equati@) ¢&n be written as

z{(cbo + O V(1) + (G5 + D3 + Dy ] - G5 + G Vi (1) + A (L)

m=1 (4.1)

+0p() +Ac(t) -Ap M} -UK (x) =0
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where
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Bg(t) = [ X0+ ySInBUU (YU (x)dx

Ac(t) = M(WC"Sﬁt) &x - (3o + ySInBJU ()UK (X
and

AD(t) IL M}ﬁ Sn,Bt 5[)(

(%0 + ySIBtU m(x)U (x)dx

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

In order to evaluate the integrals (4.1) to (4.11), use is made ofapertyr of the Dirac Delta function as

an even function to express it in Fourier cosine series namely:

J[X (xo + ysmﬂt)] == + Z cos—(xo + ysm,Bt)Cos—m
L n 1 L L

(4.12)

In view of (3.1), using equation (4.12) in equation (4.1), after somplifications and rearrangements

one obtains
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n Qq(k,m)
Z{ (t)+QO(k m Ym(D) + m HE (k, MY, (t)+ZZ:lCOST(XO

+ ySin,Bt)H (K, m, n)¥y (1) + 2;¢1-|d(k m)Cosft Yy (t) + 4;49005,&2 Cos—(xo

n=1

+ JNBYH(K, M o (®) + (C0SB2H (K, M) Yin(t) + 2(yACOSBLRS. ms%’ (X

n=1

(4.13)

+JERBOH M N0 = Y2HO (SNt () - 28280, Cos™ ()
n=1

P

0 = =
+y8nBHH D (k,m )Y, ] Stk T

S0 (1 + Jngt) + oo (g + )

+ Bksmh/‘T"(x0 +)&ngt) + ckcosh"Tk(xO + yangt)]

where

Elp(®+P3+®Py) P55 Pg
4 Ho Mo
M

and & =—— (4.15)

Mol
Equation (4.13) is the transformed equation governing the problenarofoam Bernoulli-Euler beam on
a constant elastic foundation. This coupled non-homogeneous Second orderyodifferential
equation holds for all variants of the classical boundary conditions.
In what follows, two special cases of equation (4.11) are considered.

Qo(k, m) = CDO + CD]_, Ql(k, m) = (4.14)

5.0  Solution of the Transformed Equation
Two special cases of the above equation (4.13) are considereid settion. These cases are
termed: (i) the moving force problem (ii) the moving mass problem.

0] Themoving force
Setting &, = 0in the transformed equation (4.13) one obtains
. Q4(k, m) _ P - A Ak
Yoo (t) + =2 Y, (t)—[Sn +)8ngt) + 0057 +)8ngt
m Qo(k,m) m Qo (kMg (%o )+ A (%o ) 5.1)

+ Bk (o + y8ingt) + CCosh 2k o+ yanﬁt)}

This is the classical case of a moving force problesm(aated with the system. It is an approximate
model which assumes the inertia to be effect of the moving mass asbieghgiurther rearrangement of
equation (5.1) yields

Yin(t) + 6 Yin () = P [agSin(GSInA&) + Cos(GSinA)

Qo(k,m)/.lo (52)
+ a,Cosh(GSinA&) + agSinh(GSinA |
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_ Qy(k,m) _ AXo _ X0
where a)(zjl Qo(k.m)’ ap (Cos L ASn L j (5.3)

a = (Si n)lkTXO + AkCosAkaoj , ay = (BKS' nh /‘kLXO + CkCos)lkaoj , (5.4)

ag = (BkCOShAkTXO +C, S nh"kTXOJ and G = ﬂl_k (5.5)
The general solution of equation (5.2) is given by
V(mt) = CCosayjt + CrSnay;t + R (t)Cosawyjt + P (t) Snay;t (5.6)
where

Rt) = —% j {apSn(GSinst) + aCos(GSingst) + 54

(5.7)
+ Sye” Mt Gncy, tdt,
Py(t) = Q J' {aOSi n(GSinBt) + aCos(GSingt) + eIt
W (5.8)
+S,e”CS ”ﬁt}Coswaj tat,
+ —_—
Sl:a2—2a3’ 52:8‘2—2a3, (5.9)

and G and G are constants to be determined by the initial conditions.
In order to evaluate integrals (5.7) and (5.8), use is made of the followingl Beasons

(i) Cos(ZSin6) = Jo(Z) + 2D Jpk(Z)Cos(2k8) (5.10)
k=1
(ii) Sn(Zand) =2 I (Z)Sn(2k +1)0 (5.11)
k=0
(ii) Cos(ZCosfO) = Jp(Z2) + 22 (—1)k32k(Z)Cos(2k6?) (5.12)
k=1
(iv)  Sin(ZCosh) =23 (DK Ip41(Z)Cos(2k +1)8 (5.13)
k=0
Other useful relations are
z, 1
. *(t+7) d k
(i) e2 U= > t%(2, t#0 (5.14)
k=—00
i) e =14(2) +23 1,4 (Z)Cos(2kE) (5.15)

k=1
iy 20 =102)+2Y (F1ga(Z)Sn(k + D8
k=0
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+2i (-1 5 (Z)Cos(2k8) (5.16)

k=1
0 m 7 k+2m 1
(Z j(k+2m)
> 2
and I (Z) = S (5.18)
K mZ=:0 mi(k + m)

is the modified Bessel function of the first kind of order Kwéf put k = 0, the particular case f (Z)

+ +

10(2) = i (2/2)2m :1+(Ejz+

5.19
Z mP o \2) TR P o
In view of Bessel relations (5.10) to (5.16), equations (5.7) and (5.8) become
A =--m sz Jok+1(G)Sn(2k +1)ﬂt}
Wy k=0
+ al{Jo(G) + Zi JZK(G)COSZk,&}
k=1
+ Sll:' 0(G) + Zi (DX 1 341(G) Sin(2k + 1) At
k=1 (5.20)

+2§ (=D)X1 4 (G)Cos2kp
k=1

+ Sylo(-8) + 23 (<D¥ s (-G)Sin(k + DA
k=1

+ 2i -k 2k(—G)C032k,[?[]}S' neuy talt
k=1
and
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P (t) = Fin j {30{22 Jok+1(G)Sn(2k +1)ﬁt}
Wy k=0

k=1

+ al{JO(G) + zi Jok (G)CosZk,Bt}

+S[16(0) 23 (-D¥Iea(G)SIn(2Kk + A

k=1 (5.21)
+23 (D)1 5 (G)Cos2kA]
k=1
+ a1 6(-0)+2Y (~D¥I s (-G)Sin(k + DAt
k=1
+ 2% (=D)*1 5 (-G)Cos2k Bt]}Cosautdt
k=1
where =L (5.22)
™ Qo(kmy |
Evaluating (5.20) and (5.21) above after some simplifications and rearrartgeyietd
— Pm - Snb4t S'nb3t
—_m Jor+1(G —
10 waj{aokgo 2k )[ RS }
Coshpt | — Cosbyt = Cosbyt
—ay| Jo(G I (G
al{(’() S Zk()( b b H
Cosiypt | & K Sinb,t gnbﬂ
+5[-15(G + 1)1 5 41(G -
SlHo@= 2 3 Zkl()[ 0 b,
-3 (DK (G)(C";blt + C"jfztﬂ
k=1 (5.23)
Cosiypt | & K Sinb,t S’nb3t}
+S,[-1(-G + D" 5 41(-G -
SH10-6) = B B (Dt ){m o
T [ Costyt COSbZtH
X1, (-G +
kZ:l( ) ok ( )( by b, }
and
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P(t) = %{ao > J2|<+1(G){COSb4t - COSbst}

k=0 by bs
Snbpt . < Snbjt | Snbyt
—ay| Jo(G Ik (G
o m e E smiof -2
+5llo@ 0ty y (—1)k|2k+1<e)[c°jb4t - C"Sbﬂ
b S 4 bs (5.24)
S Ky St Sinbztﬂ
+kZ::1( )" 1ok ( )( by + b,
Snpt | < K Cosbyt  Cosbgt
lo(-G ~1)* 1 ok+1(-G -
+ 5[l o(-G) o ﬂéf) 1 { o, %:
0 _1k| G Snblt S|nb2tJ:|
+I(Z::l()2k( ){bl+b2
where
bp = ay; . by = ay +2kG, by = wy —2kB (5.25)
by =y + (2K +1) B, by = wyy = (2k+ 1) (5.26)

S_ubstituting (5.23) and (5.24) into equation (5.6) yields
V(mt) = C,Cosayjt + Cr9Nnayt

P > Sn(ay —bg)t  Sn(ay ‘bs)t}
+om Jors1(G -

o {aokzz‘,o 2k+1( ){ s by
Cos(awy; —bo)t} .\ o 1 (G [Cos(a)aj — byt
oo algl 2k (G) by
. Cos(wy — bp)t Cos(ay; —bo)t}
by bo

+ alJO(G){

} + 3l o(G){

{Cos(a)aj —by)t N Cos(ayj - b2)t}

+5Y (-D¥I%(G) by o

k=1
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o S =)t § C = br)t
= (—1)'<I2k+1(G>[ Ny ~ba)t_ Snley bs)}

+S,l o(—G)[COS( +53 (DK m—a{% (5.27)
k=1

, Cos(ay - bz)t}r S, i - 2k+1(—G)Fn(w"j ~by)t  Sin(ay; - %)t}
k=0

Wy —bo)t}

by by b3

Applying the initial conditions (2.2), one obtains

C = ‘i{al Jo(G) | alz JZk(G)|:_+i:|

(i by k=1 by by
10G) | g5 (Cp GF i} 5.28
+S b, +81k221( NP )b1+bz (5.28)
IO(_G) - -1 k| -G |:i i}
+Sz—b0 +Ssz:‘,1( NP )b1+bz

and

) b o
Co = ‘i{ao 2 J2k+1(G){(y34b 1), (B3~ Ve )}
j | k=0 4 bs

b ~ Va
+S.Lz () |2|<+1(G){(yaJ 4)+(b3 yj)} (5.29)

k=0 4 b3

aj -b — Yaj
+53 (-1 (- G)[(yJ 3) | VJ)}
k=0 by b3

Substituting equations (5.28) and (5.29) into equation (5.27), simplifying andmgvgield
n

Pm Cos(w,j —bg)t — Coswy; t
Va(xt)= Y (%4 alJo(G){ 2 2
m= lwaj bo
{Cos(a)aj —by)t —Coswyjt  Cos(@w,y —by)t - Coswy t}
+
by by
°° Waj SN(wy —bg)t — (g —bg)Snawy;t
+a9 ), 32k+1(G){ A A 5 2 A
k=0 4

o Sin(wyy —g) t = (wy —bg)Snwajt}

+ 81 Wy z Jok (G)
k=1

+ Sy 10(G)

{Cos(a)aj —byp)t — Cosay; t}
bs

bo
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+ S i 1) 2k(G)[ Cos(ayj — blb)lt — Cosay; t N Cos(awyj — bzbit — Coscy; t}
k=1

e Sin(ey —by)t - (ay —ly)Sincay t
+gy (—1)k|2k+1(e){“’°“ N ~Da)t = (e ~bu) SNy

k=0 by

_ wySin(ay) — )t - (awy —b3)Sinwajt}+Szwajlo(_G){Cos(waj —bo)t—Coswajt}

bs by
+ Sy i (~2) 2k(_G){ Cos(ayj — blb)lt — Cosay; t N Cos(ayj - bzbit — Coscy; t}
k=1

i Sin(ay) —bg)t = (ay —bg)Sinayt
by

+53 (-6 2k+1(—G){
k=0

B i Sn(ayy —b)t — (ay; —bs)Sinwathx(Sn/‘_rEM AﬂCos/]—r['x

bs
. AmX AmX
+ BmS nhT + CmCOSth (530)

Equation (5.30) represents the transverse displacement respamsaowang force moving at variable
velocity of a non-uniform Bernoulli-Euler beam resting on an ieléistundation and having arbitrary end
support conditions.
(i) The moving mass problem

If the mass of the moving load is commensurable with thateottructure, the inertia effect of

the moving mass is not negligible. Thug,# 0and one is required to solve the entire equation (4.13).
This is termed the moving mass problem. To this end, equation (4.18)renged to take the form

Vin (1) + @ Yim(t) + fl{Hz(k, m)¥im(t) + Zi COS%T (X0 + 8nBt)H3(k,m,n)¥p(t)
n=1

+ 2)BH 4 (K, m)Cospt Yy (t) + 4}/,19003,&% COS%T(XO + y)anBt)Hs (K, m, n)Y, (t)
n=1

+ (yBCost 2 He (K, mYin(t) + 2(yACosA 2 S Cos %T(XO B kY@ O3

n=1

— YB2Hg(K, M) SINBt Y (t) - ZyﬂZS'n,Bti COS%T(XO +)8nBt)Hg(k,m, n)Ym(t)}
n=1

= %f;'—m [apSIn(GSinBt) + aCos(GSingt) + a,Cosh(GSingt) + agSinh(GSingt )|
0 0
oL o(K,
HO (k, HO(k. m
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_HY(k,m) HO(k,m,n)

Hg (K, m) = ool H,(k,m,n) = fgo(k -
0 HOk,m,
Hg(k,m) = % Ho(k,m,n) = % (5.32)

Furthermore, equation (5.31) is simplified and raaged to take the form

51[2;¢J—|4(k, m)Cosst + 4;&03&% CosnTﬂ(xo + J8nBt)Hs(k, m n):l
Vin®) + = ¥in(®)

[1+ el{H o(k,m) + Zi CosnTﬂ(xo +)8nBt)Ha(k,m n)ﬂ

n=1

[aé + al{(mcoset)zwk. M)+ 2005y, Cos' ™ xo + JSN)H (k. n)H
n=1

+ Ym (t)

n=1

[1+ gl{Hz(k, m) + Zi Cos%(xo +)8nBt)H;(k, m n)}]

flllﬁsz(k, mSinst + 28°Sinst Y. CO%T (xo +)8nBt)Hg(k,m n)}
n=1

. Yin(®)
[1+ e{ka, m)+2), Cos' (xo + jEnHg(k m n)ﬂ

n=1
alg  [agSin(GSingt) + aCodGSint) + a,Cos(GSInt) + agSinh(GSingt |

Qq(k, m) ® 7T _ (5.33)
1+&| Hp(k,m) +23 Cos= ~ (¥ +)8nBt)H3(k, mn)
n=1
Evidently, unlike in the case of the moving forgelglem an exact analytical solution to equatio31p.
is not possible. Though the equation yields rgatdil numerical technique, an analytical approximate
method is desirable as solutions so obtained cftesd light on vital information about the vibrating
system. To this end, we are going to use a maiific of the asymptotic method due to Struble’sy B
this technigue, one seeks the modified frequenoyesponding to the frequency of the free systemtdue
the presence of the effect of axial force N. Anieglent free system operator defined by the medifi
frequency then replaces equation (5.33). Thusset¢he right-hand-side of (5.33) to zero and amrsh

parameter) <1 for any arbitrary ratig;, defined as

_ 4
e (5.34)
so that &=n+ O(/72) (5.35)
1
!1+/7{H2(k, m) + 2% Cos”L” (x + J8INBt)H3(k, m, n)]]
n=1
=!1—/7(H2(k.m)+2§, Cos%’(xO+;snﬁt)H3(k,m,n)J+owZ) +:+ (5.36)
n=1
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where (5.37)

("'2(k m) + 22 COS—(Xo +)8nBt)H3(k,m, n)}

n=1
Substituting equation (5.35) and (5.36) into thenbgeneous part of equation (5.33) one obtains

Yo () +f7{2m—|4(k,m)Cos,8t + 4y,8Cos,6’t§: COS%T (xo + yBInBt)Hs(k,m, n)]Ym(t)

n=1

{ng naxgj[Hz(k m) + 22 Cos—(xo +)anBt)H3(k, m, n)J

n=1

n=1

+ ”{(%;COS,Bt)Z Hﬁ(k’ m) + Z(WCOSﬁt)Z i COS%T(XO + VSn,Bt)H7(k, m n)HYm(t) (538)

—n[;ﬁzHg(k,m)Sin,Gt + Z;ﬁzgnﬁti COS%T(XO +)8nBt)Hg(k,m, n)]Ym(t)

n=1
_ g
Qo(k,m)
to O(#7) only. Whens is set to zero in equation (5.38) a situationesponding to the case in which the
axial force effect is regarded as negligible isaot®d, then the solution of (5.38) becomes
Vit (M) = Coy Coslengt ~ | (5.39)
where C¢ , ahs and ¢ are constants. Furthermore gs<1 Struble’s technique requires that the
asymptotic solutions of the homogeneous part oethation (5.31) be of the form
V(mt) = AmtCoslast - gmn)]+ 7o, +0(7%) (5.40)
where A(m,t) and ¢(m,t) are slowly varying functions of time.
To obtain the modified frequency, equation (5.4@) &s derivatives are substituted into equatiaB8p
and taking in account the following trigonometidentities

S n[a)ajt —¢@(m, t)]Cos,Bt {S n[a)ajt -g(mt) + ,Bt] +S n[a)ajt -@(mt) — ,[:’t]} (5.41a)

[agSin(GSingt) + a,Cos(GSinAt) + a,Cosh(GSingt) + agSinh(GSingt]

Coslejt - gmt)]Singt = —{3' et - gmt) + gt - Snfrt -gmt) - i} (5.410)
S n[(uaJt —¢@(m, t)]CosZk,Bt = —{S n[(uaJt —g(mt) + Zkﬂt]

(5.41c)
+ Sn[(uaJt —@gmt) - 2k,3t]}
s n[a)ajt - qo(m,t)]Sn(Zk +1) = %{COS[CUajt —@gmt) - (2k + 1)/J’t] (5.41d)
- Cos[a)ajt -@mt) + (2k + 1)ﬁt]}
Cos[wmt - @m, t)]S n(2k +1)pt = —{3 ”[“’64t —Amy+ (2k+DS t] (5.41e)

~ sinfat - @m 1) - (2k +1) Bt
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Coslut - gm.) Cos2kst = %{Cos[a’ajt ~o(m) + 2] (5.41)
+ Cos[a)ajt —g(m;t) — Zkﬂt]}

one obtains.

~ 20 A(m,t)S'n[wajt - qo(m,t)J + 200 A(m,t)q'a(m,t)Cos[wajt - qa(m,t)J
—/7w§j A(m,t)H o (k, m)Cos[a)ajt - qa(m,t)]

- 20 A(m,t)i Ha(k,m, n)Cos@ Jo(Gy)Coslayt - gmy)]  (5:42)
n=1
+ %qA(m,t)(}ﬁ)z He(k, mCoslat - g(m,1)]

+pAMO(BRS Ho(km, n)Cos@ J0(Gy)Coslayt - g(mt)] = 0
n=1
retaining terms toO(#77) only. The variational equations are obtained byatiqg the coefficients of

S'nl_a)mc t- qp(m,t)] andCosjw, t — (a(m,t)] on both sides of the equation (5.42). Thus,

— 20y A(mt) =0 (5.43)
and
260 AM, ) @m,t) - ok AM, D H 5 (k, m)

- AMY Y, HalkmmCos 0 3o + rAmO(BPHk M (.49
n=1

- n
+pAmMY(BRS. Hokm, n)CosTnXOJO(G_L) =0
n=1
Solving equations (5.43) and (5.44) respectivelegi

A(mt) = Co (5.45)
where Cais a constant and
QM) = 2layy (Hokm) + Ra(k,m)
(5.46)
[ 2 {He(k,m) + 2R, (k,m,n)}
(8) 2 ]]t +¥m

to O(77) only. Wherey,, is a constant. Therefore, when the inertia eftécthe moving mass is
considered, the first approximation to the homogesesystem is

Yint) = CoCoslaayt -~ dp) (5.47)

where
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pplHstem+ 2Rkmn] | o

20

represents the modified natural frequency due ¢optiesence of the moving mass. It is observed that
when 7 =0, we recover the frequency of the moving force fobwhen the inertia effect of the moving
mass is neglected. Thus, to solve the non-homagsnequation (5.31), the differential operator \whic
acts on\7(m,t) and \7(k,t) is replaced by the equivalent free System opemgéined by the modified
frequencya; . Using equation (5.48) the homogeneous part odton (5.13) can be written as

2
d ;(t’g(t) + 6 Y (1) =0 (5.49)

Thus, the entire equation (4.13), becomes
d2Y,(t)
2t o Yim(t)
(5.50)

=5 ,7(—|I<gm) [agSin(GSingt) + &Cos(GSingt) + a,Cosh(GSingt) + agSinh(GSinst )|
o(K,

retaining O(/]) only. This is analogous to equation (5.2). Thugng similar argument as in moving

force problem,\7(m,t) can be obtained and when inverted gives

@y = @ 11=7 | (Hakm) + Ry(kmm) -
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00

Vm(x,t) = Z%(%j a1Jo(G){
mzlagj

Cos(aj — bp)t — Cosay; t}

bo
ray Y, J2k<G){C°S(“’°J ~by)t - Cosuajt | Cos{ay ~by)t ~ Coscy t}
k=1 by b,
+ay i J2k+1(G)[ h Sin(aj = b4)tb_ (ahj —bg)Sinay;t
k=0 y
_ @i Sin(ay ~ba)t () ~ba)Snca t} + Sy IO(G){COS(%j — bp)t — Cosay, t}
® bo
+ Sy i (=D* 1 5 ( G){Cos(a’oj —by)t - Cosay; t N Cos(ap; — o)t — Cosa; t}
k=1 by b,
+S i (=D 2k+1(G){‘Ubj Sin(ay - b4)tb;(%j —by)Snayy t
k=0

_ @ Sin(ay —bg)t — (apy —b3)Sinay, t} + Spaay! O(_G)[COS(%J' ~ by)t — Cosay,; t}
s by
+Spu; 3, (3K 2k(—G>{C°S(%" ZDUtT Coseay , Costey ~Bp)t Close t}
k=1 b b,
+5,> (_1)k|2k+1(—G){%an(%j 'b4)tb‘4(%i ~by)Sinat
k=0

o Sin(ay - bg)tb—3(%j - bs)Sinay,; tD X(Sn/]—'fx + AmCOS/]—rCX

+By,S nh/]—fCX + CmCosh"—ij (5.51)

Equation (5.51) represents the transverse-dispkcenesponse to a moving mass moving at variable
velocities of a non-uniform Bernoulli-Euler beamstieg on elastic foundation when the boundary
conditions are arbitrary.

6.0 Illustrative Examples
In order to illustrate our results in the foregoiagalysis, in what follows, we provide some
examples;
(@ Simply Supported boundary conditions.
(b) Clamped-Clamped boundary conditions
(c) The Cantilever.
6.1 Simply Supported Boundary Conditions
In this case, the displacement and the bending mbwaaish. Thus
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0V (O1) _ 0= oA/ (L,t)

V(0,t) =0 =V (L,1), 5 5 (6.1)
ox oX
Hence for normal modes
9°U (0 02U (L
Um(®) =0=Up(L), vl BRI
which implies that
2
@=0=uw, U0 o U ©3)
X X
Applying (6.2) and (6.3), one obtains
An=A=0 Bn=B=0, C,,=C(=0 (6.4)
An=mm  and A =k (6.5)

Thus, substituting equations (6.4) and (6.5) intpagion (4.13) and rearranging, the moving force
problem reduces to the non-homogeneous secondandlaary differential equation given by

. Ay (K, m) __ P kn .
O+ 5 e ™0 = A ieme I (%o + y8ingt) (6.6)
where
_Elg|5 60m°7r°k 6m (al azj
Ay (k,m) = 1- =2
e 4/»!0{ 3 Fa-p-mfaep-n?] L2 2
12m°7rk _607°mk(mZ +1- k)

L3[3 P - (e -m?| s mP —i2e-mP -2

_ 247" (@ ﬂj 12k (mZ + 9 - k) 6.7
4 (2 |_3[3+m2 kZJl3 m)? - k2] '
108n3m3k . mznz(ﬂ_ﬁj
13|(3- k)2 2][3+k m| 1t L2 2
. 60m°7rk , NP KOL
L3|(-k) 2][1+k 2] 260l 2%
and
L 4mkL
Boliom) = 2 17[1 k) —m2“1+k —mZJ ©8)

Equation (6.6) can be rewritten as
Y (t) + cfg Yo (t) = Py [Si nF OCos(GOSi nﬂt)+ CosF g n(GOSi nﬂt)J (6.9)
where
C,Jﬁf :M, me :L, FO :kﬂandGo :k_ﬂy (610)
Do (km) Do(k,m) o L
E_quation (6.6) when solved in conjunction with ihéial conditions, one obtains an expression for

V (m,t) which on inversion yields
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[Cos(wmf =)t — Coscuy t]

Va(xt) ="

N Py {wmf SnF23,(GY)

m=1 bO
+ Wy SnFoi JZk(Go){COS(C%r =)t —Cosayt . Cos(awhs —bo)t —Cosamt}
- » . %2 (6.11)
+ CosF? z J2k+1(GO){a'}ﬂf (e —bg)t = (chy —bsg) SN t
k=0 b4
_ Gy SN(Geyr —3)t — (et —Q)Sn%t}}wn%
bs L

Equation (6.11) represents the transverse-dispkcenesponse to a moving force moving at a variable
velocity of a simply supported non-uniform Berno@luler beam resting on elastic foundation.
Substituting equations (6.4) and (6.5) into equefm51), rearranging and following arguments samid
those in previous section, Struble’s techniqueseduto obtain

Whm = Whf 1—%0[(R1(k,m) + Rz(k,m)86)+ (Rg(k,m);;:(k,m)Bo) (6.12)

to order O(77,) only as the modified natural frequency of the feystem due to the presence of the
moving mass of this model.

where
Ry(k m)—; Ro(k,m) = 2R (k,m), R __pmn , Rq = 2R3(k,m) (6.13)
U T 2ng(kom) 2 TS T 200k, m) 8
and
B = SinFJo(G)SINF234(GY) + 29nFSnF®Y. 3, (G) Y 3 (G)
) 3 k=1 k=1 (6.14)
+2CosFCosF® Y. J541(G) Y. Iok41(GY)
k=0 k=0
neglecting higher order termsAf Thus, the moving mass problem reduces to
d Y”‘(t) + Bt = —29_sn 7 (5 + jain) (6.15)
Ag(k,m) L

which when solved in conjunction with the initiabraditions yields expression fd?(m,t) and on
inversion becomes
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n e 0 0
Vn(X,t) — Eng { . SnF Jo(G

)
C —by)t-C t
= agtkom) ai%m 0y [ 0S(hym —bp) OSCU]*nm]

> C -b)t-C t
+%m9n':oz ‘JZk(GO){ 0S(%nm btl)i O5%hm
k=1

N Cos(wnm — béz)t - Coswmmt} +CosF 0 Z Jzk+1(GO) % (6.16)
k=0

Whm S N(ham — P4)t = (Wham = P4) SNt
by
_ @rmSIN(&rm = D)t = (@hm —@)Sn%mt}}x g V%
bs L

This represents the transverse-displacement resptinga concentrated mass moving with variable
velocity of a simply supported non-uniform Berné&uler beam resting on elastic foundation.

6.2 Clamped-Clamped End Conditions
At a clamped end, both deflection and slope vanighus,

V09 =0=V(LD) a0 o VLD 611
X
Hence for normal modes
Um(O):O:Um(L) andM:O:M (6.18)
oX 0x
which implies that
Uk(O):O:Uk(L) andm:(_):w (6.19)
ox 0x
Thus, it can be shown that
A= SnhAp, - SnAp, :CgsAm—CoshAm:_Cm and B, = 1 (6.20)
CosA,, —CoshA,,,  SnA, + SnhAy,
In view of (6.20), the frequency equation is given
CosACoshA,, =1 (6.21)
It follows from equation (6.21), that
A =4.73004, A, =7.85320, A3 =10.99561 (6.22)

Expression fol, By ,Cx and the corresponding frequency equation are rexaiby a simple

interchange of m and k in (6.19) and (6.20). Thios,general solutions of the associated movingefor
and moving mass problems are obtained by substituglevant results in equations (6.20)- (6.22) int
(5.30) and (5.51)

6.3  TheCantilever
In this illustrative example, cantilever with freght-hand end and clamped at the left hand end is
considered. Accordingly, the boundary conditiores a

vy  OA(LY | 0V(LY

V(Ot)=0=
O ox x> ox3

(6.23)
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and hence also

2
0,0 =0=9ImO ;dUn() _o_ dUmL) 624
dx dx? ax3
which implies that
2
Uk(O):O:dU"(O) and Uk("):O:M (6.25)
dx dx? a3
Using (6.23) in (6.24), it can be shown that
A= SnAy, — SnhAy, :CosAm—CgshAm - . andBy, = -1 (6.26)
atendx=0andatend x =L
A= —SnAm — SnhAy, _ —C.:osAm —C_osh)lm - —C,, andB,, = -1 6.27)
CosAp, + CoshAp, SnhAy, - Sndpy,
and the frequency equation for both end conditisns
CosACoshA,, = -1 (6.28)
and we have that
A =1.875, A, = 4.694, A3 = 7.855 (6.29)

Using (6.26), (6.27) and (6.28) in equations (5.809 (5.51), one obtains the transverse displacemen
response respectively to a moving force and a ngowiass of a cantilever Bernoulli-Euler beam resting
on elastic foundation.

7.0 Remarkson Analytical Solutions

The response amplitude of a dynamical system ssithismay grow without bound. Conditions
under which this happens are termed resonancetimoredi Equation (6.9) clearly shows that the Simpl
Supported elastic beam resting on elastic foundadad traversed by moving force experiences
resonance effect whenever

G =2KB andahyy = (2k+1) 8 (7.1)

while equation (5.52) shows that the same beamruh@eaction of a moving mass reaches a state of
resonance when

G = 2k and ey = (2K +1)3 (7.2)
From equation (3.11),

Chm = Gy -4 (2- 35 (2G)Cos2F ) + (2R = Rudo(G)Cos2F) (7.3)
2 20f¢
which implies
2k
Whf = < (7.4)

1_/2] (2- 3o (2G)Cos2F) + (2Rm - Rr;i%iG)COSZF)

It is therefore evident, that for the same natfrexjuency, the critical speed for the system cdingiof a
Simply Supported non-uniform beam resting on astieldoundation and traversed by a force moving at
a non-uniform velocity is greater than that of theving mass problem. Thus, for the same natural
frequency of a non-uniform beam, resonance is ezhearlier in the moving mass system than in the
moving force system.
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For other classical boundary conditions other tBamply Supported end conditions, equation (5.45)
clearly shows that the non-uniform beam restinguomlastic foundation and traversed by a force ngpvi
with variable velocity reaches a state of resonavigenever

wyj = 2kg  and wyj = 2k+1p (7.5)
while equation (5.52) shows that the same non-umiteeam under the action of a moving mass
experiences resonance effect whenever

ahj = 2k and ahj = 2k+1p (7.6)
From equation (2.174)

)+ (;ﬁ)Z(H £ (mm) + 2R, (M, m, n))

204

2kp
(7.8)
)+ (;ﬁ)Z(H £ (Mm) + 2R, (M, m, n))

204

Evidently, from equation (7.6) and (7.8), the saegults and analysis obtained in the case of algimp
Supported non-uniform Bernoulli-Euler beam are ivieta for all other examples of classical boundary
conditions.

cly = {12 (Hp(mm) + Rmmn) @.7)

This implies that

a’bj:

1-2] (Hp(mm) + R(mmn)

8.0 Numerical Calculationsand Analysis.
In order to illustrate the theory in this paper muitally, it is assumed that the non-uniform
elastic beam of length 12.2m is at rest and thdliequm position of the longitudinal oscillatingp&d

X = 2iO other data are as followgz=2x10"m, :3772, E =220an*/s? and the ratio of the
U

mass of the load to the mass of the beam is OR%e values of axial force N and subgrade K, are
between 0 and 20,000,000 and 0 &f),000N / m° respectively.

0.06

——N=0
------- N=200000
0.05 4 -~~~ N=2000000
————— N=20000000 | /.

0.04 -

0.03 A

V(Li2,0)

0.02 - SN L\

0o1d / Y i

T T T A T T
0.5 1 15 2 25 3 3.5 4 4{5

Time(t)sec

-0.01

Fig 8.1: Transverse displacement of the simply supported non-uniform beam under the action
of concentrated masses moving at variable velocities for various values of axial force N for
fixed K (40000)
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Figures 8.1, 8.3, 8.5 depict respectively theedsitbn profiles for Simply Supported, Clamped-
Clamped and Cantilever non-uniform beams undeattiens of concentrated loads travelling at varying
velocities for various values of axial force N afwd fixed K (40,000). The figures show that as N
increases, response amplitudes of the non-unife@mbdecrease. In a similar

0.09

0.08 4

0.07 4

0.06 -

0.05 4

0.04 4

V(L/2,tym

0.03 4

0.02 4

0.01 A -

0.5 4 4ls
Time(t)sec

-0.01

Fig 8.2: Deflection profile of the simply supported non-uniform beam under the action of
concentrated masses moving at variable velocities for various values of foundation moduli K
and for fixed N (200000)

1.8E-14
——N=0

~~~~~~~ N=200000
E— N=2000000
————— N=20000000

1.6E-14 -

1.4E-14 -
1.2E-14 -
1E-14

BE-15 - RN B S L\

V(L/2,)m
P

6E-15 -

4E-15 4

2E-15 A

T

0

-2E-15

N

RN

T
0.6

T
0.8

1

1.2

1.4

1.6 118
Time(t)sec

Fig. 8.3: Transverse displacement of the clamped-clamped non-uniform beam under the action
of concentrated masses moving at variable velocities for various values of axial force N for
fixed K (40000)

manner, as the foundation moduli K increase, faedivalue of N, the displacement response of Simply
Supported, Clamped-Clamped and Cantilever non-tmifieams under heavy masses moving at varying
velocities decrease as shown in figures 8.2, &1d,&6. In figure 8.7, the transverse displacenaént
moving force and moving mass cases for Simply-Sapdonon-uniform beam traversed by a load
moving at varying velocities for fixed N = 200,080d K = 40,000 is displayed. Clearly, the response
amplitudes of moving mass are higher than that@htoving force.

Journal of the Nigerian Association of Mathematical Physics, Volume 9 (November 2005)
Concentrated loads travelling at varying velocities S. T. Oni and B. Omolofe J of NAMP



The same result is obtained for other illustrativeundary conditions of Clamped-Clamped and
Cantilever in Figures 8.8 and 8.9 for the same bewael, as in paper [15]. In general, higher valok
axial force N and foundation modulus K are requifed a more noticeable effect on the response
amplitudes of the beam in the case of other boyndanditions than those of Simply-Supported end
conditions.

1.8E-14

16E-144 K=40000
—me K=400000

1.4E-14 -

1.2E-14 A

1E-14 4

8E-15

V(L/2,9m

BE-15 1 A s SN P i
4E154 | i A A /i .

2E-15 4

o £

T T T T
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18
Time(t)sec

-2E-15

Fig. 8.4: Deflection profile of the clamped-clamped non-uniform beam under the action of
concentrated masses moving at variable velocities for various values of foundation moduli K
for fixed N (200000)
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—N=0
256104  / N\ | N=200000
—e— N=2000000
————— N=20000000

2E-10 - B

1.5E-10

V(L/2,)m

1E-10 1 ; \ : 7

5E-11 - : A

Time(t)sec

-5E-11

Fig. 8.5: Transverse displacement of the clamped-free non-uniform beam under the action of
concentrated masses moving at variable velocities for various values of axial force N for fixed K
(40000)

9.0 Conclusions.

In this study, analytical solution has been oladifior the dynamic behaviour of non-uniform
Bernoulli-Euler beams subjected to concentratedsesasravelling at varying velocities. The method
proposed is very versatile and is capable of tagkthis class of problem for any of the classical
boundary conditions often encountered in structaiedign. It has enormous advantages over the
numerical techniques as solutions obtained by édslight on vital information about the vibrating
system. The effects of various parameters, sudateasa, foundation moduli and axial force on the
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Fig. 8.5: Transverse displacement of the clamped-free

non-uniform beam under the action of

concentrated masses moving at variable velocities for various values of axial force N for fixed K

(40000)
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Fig. 8.6: Deflection profile of the clamped-free non uniform beam under the action of
concentrated masses moving at variable velocities for various values of foundation moduli K

for fixed N (20000)

dynamical system are investigated. It is found,thanerally, as foundation moduli K and axial #oid

are increased, the response amplitudes of thetiigraystem decrease.

Also, in all the illustmativ

examples considered, for the same natural frequetheycritical speed for moving mass problem is
smaller than that of the moving force problem. e#srresonance is reached earlier in the moving mass
problem. Thus, accurate evaluation of the moviragsnproblem is desirable as approximation by the

moving force solution is highly misleading.
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Fig 8.7: Comparison of the displacement of moving force and moving mass cases for simply
supported non-uniform beam for N=200000 and K=40000
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Fig. 8.8: Comparison of the displacement response of moving force and moving mass cases
for clamped-clamped non-uniform beam for N=200000 and K=40000

References

[1] Sadiku, S. and Leipholz, H. H. E, 1981. On thgynamics of Elastic Systems with Moving
Concentrated Masses Ing. Archiv. 57: 223-242

[2] Oni, S. T., 2000. Flexural Vibrations under Mioy Loads of Isotropic Rectangular Platesona -Non

Winkler Elastic Foundation. Journal of the NigerBociety of Engineers 35(1): 18- 27,40-41

[3] Gbadeyan, J. A. and Oni, S. T., 1995. Dynanmeti&®viour of Beams and Rectangular Plates under

Moving Loads. Journal of sound and vibration 182657-695

[4] Huang, M. H. and Thambiratnam, D. P., 2000 Betibn response of plate on Winkler foundation to
moving accelerated loads. Engineering StructdBed134-1141

[5] Lee, H. P. and Ng T. Y. 1996, Transverse uibra of a plate moving over multiple points
supports. Applied Acoustics 47(4): 291-301

Journal of the Nigerian Association of Mathematical Physics, Volume 9 (November 2005)
Concentrated loads travelling at varying velocities S. T. Oni and B. Omolofe J of NAMP



[6] Adams, GG., 1995. Critical Speeds and the Resp®f a Tensioned Beam on an Elastic Foundation
to Repetitive Moving Loads: Int. J. Mech. Scie3d@€7): 773-781

[7] Chen, Y. H. and Li, C. Y., 2000, Dynamic resperof elevated high speed railway. American Spcie

of Civil Engineers, Journal of Bridge Engineeringl24-130

[8] Savin E, 2001. Dynamic Amplification Factor anBesponse Spectrum for the Evaluation of
Vibrations of Beams under Successive Moving Loaltsurnal of sound and vibration 248 2): 267-288

[9] Rao, G. V., 2000, Linear dynamics of an eladtieam under moving loads. ASME. Journal of
Vibrations and Acoustics 122

[10] Shadnam, M. R., Rofooei, F. R., Mofid M aneMi, B., 2002. Periodicity in the Response of  Non

Linear Plate under Moving Mass. Thin-walled stanes 40: 283-295

[11] Frybal, L., 1972. Vibrations of Solids and®ttures under moving loads. Groningen Noordhoff

[12] Oni S. T ; Response of a non-uniform beanimgon an elastic foundation to several moving sses.

Abacus, Journal of Mathematical Association of Migevol. 24, No 2, 1996.

[13] Oni, S. T., and Awodola, T. O., 2003. Vibratt®o under a Moving Load of a Non-Uniform
Rayleigh Beams on Variable Elastic Foundationrdaluof Nigerian association of Mathematical Pbgsi

7:191-206

[14] Gbadeyan, J. A. and Ayesimi, Y. M., 1990, Rawe of an elastic beam resting on viscoelastic
foundation to a load moving at non-uniform spedligeria Journal of Mathematics and Applications 3

73-90
[15] Oni S. T., and Omolofe B., 2004, Dynamical Msés of a Prestressed Elastic Beam with General
Boundary Conditions under Loads Moving at Non-umifé&speeds. Journal of Engineering and Engingerin

Technology, (Accepted for publication).

Journal of the Nigerian Association of Mathematical Physics, Volume 9 (November 2005)
Concentrated loads travelling at varying velocities S. T. Oni and B. Omolofe J of NAMP



