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 Abstract 
 

This paper investigates the dynamics behaviour of non-uniform Bernoulli-
Euler beams subjected to concentrated loads �ravelling at variable velocities.  
The solution technique is based on the Generalized Galerkin Method and the 
use of the generating function of the Bessel function type.  The results show 
that, for all the illustrative examples considered, for the same natural 
frequency, the critical speed for the system consisting of a non-uniform beam 
traversed by a force moving at a non-uniform velocity is greater than that of 
the corresponding moving mass problem.  It was also found that, for fixed 
axial force, an increase in foundation moduli reduces the response amplitudes 
of the dynamical system.  Furthermore, it was shown that the transverse-
displacement amplitude of a clamped-clamped non-uniform Bernoulli-Euler 
beam traversed by a load moving at variable velocities is lower than that of the 
cantilever.  The response amplitude of the same dynamical systems which is 
simply supported is higher than those which consist of clamped-clamped or 
clamped-free (Cantilever) end conditions.  Finally, an increase in the values 
of foundation moduli and axial force reduces the critical speed for all variants 
of the boundary conditions 

 
pp. 79 - 102 
 

1.0 Introduction 
Studies in structural dynamics dealing with moving loads on bridges are enormous and have been 

enriched in the last few decades by the development of high-speed railway networks in the developed 
countries.  Similarly, there exist remarkable advances in various branches of transport.  These advances 
are characterized by increasingly higher speeds and weights of vehicles.  Hence, structures and media 
over or in which the vehicles move have been subjected to vibrations and dynamic stresses far larger than 
ever before.  Thus, there is the need for continuous study of the behaviour of bodies subjected to moving 
loads.  Such a study will, for instance, provide a safer and more economic design of structures on which 
the loads move.   
 In most of the studies available in literature, such as the work of Sadiku and Leipholz [1], Oni 
[2], Gbadeyan and Oni [3], Huang and Thambiratrian [4] , Lee and Ng [5], Adams [6 ], Chen and Li [7], 
Savin [8], Rao [9], Shadnam et al [10], the scope has been limited [11] to structural members having 
uniform cross-sections whether the inertia of the moving load is considered or not.  The speeds at which 
these loads travel have also been idealized to be uniform.  Nonetheless, for practical purposes, these are 
not so.  In reality the cross-sections of structural members such as bridge, girders, hull of ships, concrete 
slabs etc are often non-prismatic and the velocity of the loads which move over these elastic solid bodies 
are often non-uniform. 
 Among recent studies where non-uniform structural members have been subjected to heavy 
masses is the attempt of Oni [12] who investigated the response of a non-uniform beam resting on an 
elastic foundation to several moving masses.  The deflection of the non-uniform beam was calculated for 
several values of foundation moduli and shown graphically as a function of time.  He found that  
the response amplitudes of both moving force and moving mass problems decrease with increasing 
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foundation constant.  However, his method of solution was limited to simply supported end conditions.  A 
more elegant method was presented by Oni and Awodola [13] to assess the vibration under a moving load 
of a non-uniform Rayleigh beam on variable elastic foundation.  The technique is based on the 
Generalized Galerkin’s Method and Struble’s asymptotic technique.  An important feature of this 
technique is that it can handle this class of problem for all variants of classical boundary conditions.  
Nonetheless, the load speed here was assumed to be uniform. 
 Thus, this work is concerned with the dynamic behaviour of non-uniform Bernoulli-Euler beams 
subjected to concentrated loads travelling at variable velocities.  The main objective of this study is to 
obtain an analytical solution to this problem.  Numerical analysis will be carried out and results in plotted 
curves will be presented. 
 
2.0 Formulation of the Problem 
 A non-uniform beam is considered.  A relatively large mass M with considerable inertia is 
assumed to strike at time t = 0 and travel across it at a variable velocity such that the motion of the contact 
point of the moving mass is given by )(tfX p = .  The beam’s properties such as moment of inertia I(x) 

and the mass per unit length of the beam )(xµ  vary along the span L of the beam. The equation of 
motion with damping neglected, is given by the fourth order partial differential equation [11,14]. 
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where x is the spatial coordinate, t is the time, V(x,t) is the Transverse Displacement of the beam, E is the 
Young’s Modulus, I(x) is the variable Moment of inertia, )(xµ  is the variable mass per unit length of the 
beam, N is the axial force, K is the elastic foundation constant and  
P = Mg (where g is the acceleration due to gravity).  The boundary conditions of the structure under 
consideration will be stated later under illustrative examples.  The initial conditions without any loss of 

generality are taken as  
t

xV
xV

∂
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To get 
dt

df
 which is the velocity of the moving load, we adopt the example in [14] and set the distance 

function as    )()( tSinxtf o βγ+= .    (2.3) 

where 0x  is the equilibrium position of the longitudinally oscillating load, γ is the longitudinal amplitude 

of oscillation of the load and β  is the longitudinal frequency of the load.  We also adopt the example in 

[13] and take I(x) and )(xµ to be of the form 
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Substituting equations (2.4 ) and (2.5) in equation (2.1) one obtains 
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3.0 Solution Procedures 

It is evident that an exact closed form solution of the partial differential equation (2.6) is 
impossible.  Thus, we generalize the Galerkin’s Method described in [12] and make use of this to reduce 
the partial differential equation to a sequence of ordinary differential equations.  Thus, a solution of the 
form 
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is sought where )(xUm is chosen such that pertinent boundary conditions are satisfied.  Equation (3.1) 

when substituted into the equation (2.6) yields  
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An appropriate selection of functions for beam problems are beam mode shapes.  Thus, the mth normal 
mode of vibration of a uniform beam [11] 
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is chosen such that the pertinent boundary conditions are satisfied.  In (3.3), mλ is the mode number.  Am, 

Bm, Cm are constants which are obtained by substituting (3.3) into the appropriate boundary conditions. 
(see Section 6). 
 
4.0 Operational Simplification. 
 By applying the Generalized Galerkin’s Method (GGM) of (3.1), equation (3.2) can be written as 
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In order to evaluate the integrals (4.1) to (4.11), use is made of the property of the Dirac Delta function as 
an even function to express it in Fourier cosine series namely: 
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In view of (3.1), using equation (4.12) in equation (4.1), after some simplifications and rearrangements 
one obtains 



Journal of the Nigerian Association of Mathematical Physics, Volume 9 (November 2005) 
Concentrated loads travelling at varying velocities  S. T. Oni and B. Omolofe  J of NAMP 

(4.13) 
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Equation (4.13) is the transformed equation governing the problem of a uniform Bernoulli-Euler beam on 
a constant elastic foundation.  This coupled non-homogeneous Second order ordinary differential 
equation holds for all variants of the classical boundary conditions.  
In what follows, two special cases of equation (4.11) are considered. 
 
5.0 Solution of the Transformed Equation 
 Two special cases of the above equation (4.13) are considered in this section. These cases are 
termed: (i) the moving force problem (ii) the moving mass problem. 
(i) The moving force  

Setting 01 =ε in the transformed equation (4.13) one obtains 
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This is the classical case of a moving force problem associated with the system.  It is an approximate 
model which assumes the inertia to be effect of the moving mass as negligible. A further rearrangement of 
equation (5.1) yields  
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The general solution of equation (5.2) is given by   
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and C1 and C2 are constants to be determined by the initial conditions.   
In order to evaluate integrals (5.7) and (5.8), use is made of the following Bessel relations  
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In view of Bessel relations (5.10) to (5.16), equations (5.7) and (5.8) become 
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and 
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Evaluating (5.20) and (5.21) above after some simplifications and rearrangements yield 
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and 
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where 

ajb ω=0 , βω kb aj 21 += , βω kb aj 22 −=    (5.25) 
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Substituting (5.23) and (5.24) into equation (5.6) yields 
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Applying the initial conditions (2.2), one obtains 
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and  
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Substituting equations (5.28) and (5.29) into equation (5.27), simplifying and inverting yield 
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(5.30) 

Equation (5.30) represents the transverse displacement response to a moving force moving at variable 
velocity of a non-uniform Bernoulli-Euler beam resting on an elastic foundation and having arbitrary end 
support conditions. 
(ii)  The moving mass problem 
 If the mass of the moving load is commensurable with that of the structure, the inertia effect of 
the moving mass is not negligible.  Thus, 01 ≠ε and one is required to solve the entire equation (4.13).  
This is termed the moving mass problem.  To this end, equation (4.13) is rearranged to take the form 
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Furthermore, equation (5.31) is simplified and rearranged to take the form  
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Evidently, unlike in the case of the moving force problem an exact analytical solution to equation (5.31) 
is not possible.  Though the equation yields readily to numerical technique, an analytical approximate 
method is desirable as solutions so obtained often shed light on vital information about the vibrating 
system.  To this end, we are going to use a modification of the asymptotic method due to Struble’s.  By 
this technique, one seeks the modified frequency corresponding to the frequency of the free system due to 
the presence of the effect of axial force N.  An equivalent free system operator defined by the modified 
frequency then replaces equation (5.33).  Thus, we set the right-hand-side of (5.33) to zero and consider a 
parameter η <1 for any arbitrary ratio1ε , defined as  
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Substituting equation (5.35) and (5.36) into the homogeneous part of equation (5.33) one obtains 
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to )(ηO only.  When η  is set to zero in equation (5.38) a situation corresponding to the case in which the 
axial force effect is regarded as negligible is obtained, then the solution of  (5.38) becomes 

   [ ]nfnfnfnf tCosCtmV ψω −=),(    (5.39) 

where nfnfnf andC ψω, are constants.  Furthermore as η <1 Struble’s technique requires that the 

asymptotic solutions of the homogeneous part of the equation (5.31) be of the form  
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where ),( tmΛ and ),( tmφ are slowly varying functions of time. 
To obtain the modified frequency, equation (5.40) and its derivatives are substituted into equation (5.38) 
and taking in account the following trigonometric identities 
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one obtains. 
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 retaining terms to )(ηO only.  The variational equations are obtained by equating the coefficients of 

[ ]),( tmtSin nf φω −  and [ ]),( tmtCos nf φω −  on both sides of the equation (5.42).  Thus, 
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Solving equations (5.43) and (5.44) respectively gives 
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to )(ηO  only.  Where mψ  is a constant.  Therefore, when the inertia effect of the moving mass is 

considered, the first approximation to the homogeneous system is 

  [ ]majm tCosCtY Φ−= ω*
0)(      (5.47) 

where  
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represents the modified natural frequency due to the presence of the moving mass.  It is observed that 
when 0=η , we recover the frequency of the moving force problem when the inertia effect of the moving 
mass is neglected.  Thus, to solve the non-homogeneous equation (5.31), the differential operator which 

acts on ),( tmV and ),( tkV  is replaced by the equivalent free System operator defined by the modified 

frequency ajω .  Using equation (5.48) the homogeneous part of equation (5.13) can be written as  
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Thus, the entire equation (4.13), becomes 
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retaining ( )λO  only.  This is analogous to equation (5.2).  Thus, using similar argument as in moving 

force problem, ),( tmV  can be obtained and when inverted gives 
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    (5.51) 

Equation (5.51) represents the transverse-displacement response to a moving mass moving at variable 
velocities of a non-uniform Bernoulli-Euler beam resting on elastic foundation when the boundary 
conditions are arbitrary. 
 
6.0 Illustrative Examples 
 In order to illustrate our results in the foregoing analysis, in what follows, we provide some 
examples; 
(a) Simply Supported boundary conditions. 
(b) Clamped-Clamped boundary conditions 
(c) The Cantilever. 
6.1 Simply Supported Boundary Conditions 

In this case, the displacement and the bending moment vanish.  Thus 
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Applying (6.2) and (6.3), one obtains 
0;0;0 ====== kmkmkm CCBBAA     (6.4) 

 πλπλ kandm km ==      (6.5) 

Thus, substituting equations (6.4) and (6.5) into equation (4.13) and rearranging, the moving force 
problem reduces to the non-homogeneous second order ordinary differential equation given by 
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Equation (6.6) can be rewritten as  
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Equation (6.6) when solved in conjunction with the initial conditions, one obtains an expression for 

),( tmV which on inversion yields 
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Equation (6.11) represents the transverse-displacement response to a moving force moving at a variable 
velocity of a simply supported non-uniform Bernoulli-Euler beam resting on elastic foundation.  
Substituting equations (6.4) and (6.5) into equation (5.51), rearranging and following arguments similar to 
those in previous section, Struble’s technique is used to obtain 
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to order )( 0ηO only as the modified natural frequency of the free system due to the presence of the 

moving mass of this model. 
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neglecting higher order terms ofλ .  Thus, the moving mass problem reduces to 
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which when solved in conjunction with the initial conditions yields expression for ),( tmV  and on 
inversion becomes 
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(6.16) 

This represents the transverse-displacement response to a concentrated mass moving with variable 
velocity of a simply supported non-uniform Bernoulli-Euler beam resting on elastic foundation. 
 
6.2 Clamped-Clamped End Conditions 

At a clamped end, both deflection and slope vanish.  Thus,  
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Thus, it can be shown that 
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In view of (6.20), the frequency equation is given as 
  1=mmCoshCos λλ       (6.21) 

It follows from equation (6.21), that 
 73004.41 =λ , 85320.72 =λ , 99561.103 =λ     (6.22) 

Expression for kA , kB  , kC  and the corresponding frequency equation are obtained by a simple 

interchange of m and k in (6.19) and (6.20).  Thus, the general solutions of the associated moving force  
and moving mass problems are obtained by substituting relevant results in equations (6.20)- (6.22) into 
(5.30) and (5.51) 
 
6.3. The Cantilever 

In this illustrative example, cantilever with free right-hand end and clamped at the left hand end is 
considered.  Accordingly, the boundary conditions are 

x

tV
tV

∂
∂== ),0(

0),0(  and 
3

3

2

2 ),(
0

),(

x

tLV

x

tLV

∂
∂==

∂
∂

    (6.23) 

( ) [ ]

L

xm
Sin

b

tSinbtbSin

b

tSinbtbSin

GJCosF
b

tCostbCos

b

tCostbCos
GJSinF

tCostbCos
b

GJSinF

mk

Lg
txV

mmmmmmmm

mmmmmmmm

k
k

mmmm

mmmm
k

k
mm

mmmmmm
mm

n

m
n

πωωωω

ωωωω

ωω

ωωω

ωωω
ω

ε

×








−−−−




 −−−

×+


−−+




 −−+







−−
∆

=

+
∞

=

∞

=

=

∑

∑

∑

3

33

4

44

0
12

0

0

2

2

1

10
2

1

0

0
0

0
0

0

2
0

1

1

)()(

)()(

)(
)(

)(
)(

)(
)(

),(
,

m
mm

mm

mm

mm
m C

SinhSin

CoshCos

CoshCos

SinSinh
A −=

+
−=

−
−=

λλ
λλ

λλ
λλ



Journal of the Nigerian Association of Mathematical Physics, Volume 9 (November 2005) 
Concentrated loads travelling at varying velocities  S. T. Oni and B. Omolofe  J of NAMP 

and hence also 
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Using (6.23) in (6.24), it can be shown that 
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and the frequency equation for both end conditions is 
  1−=mmCoshCos λλ       (6.28) 

and we have that 
  875.11 =λ , 694.42 =λ , 855.73 =λ      (6.29) 

Using (6.26), (6.27) and (6.28) in equations (5.30) and (5.51), one obtains the transverse displacement 
response respectively to a moving force and a moving mass of a cantilever Bernoulli-Euler beam resting 
on elastic foundation. 
 
7.0 Remarks on Analytical Solutions 

The response amplitude of a dynamical system such as this may grow without bound.  Conditions 
under which this happens are termed resonance conditions.  Equation (6.9) clearly shows that the Simply 
Supported elastic beam resting on elastic foundation and traversed by moving force experiences 
resonance effect whenever  

  βω kmf 2=  and βω )12( += kmf     (7.1) 

while equation (5.52) shows that the same beam under the action of a moving mass reaches a state of  
resonance when 

   and βω )12( += kmm     (7.2) 

From equation (3.11), 
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It is therefore evident, that for the same natural frequency, the critical speed for the system consisting of a 
Simply Supported non-uniform beam resting on an elastic foundation and traversed by a force moving at 
a non-uniform velocity is greater than that of the moving mass problem.  Thus, for the same natural 
frequency of a non-uniform beam, resonance is reached earlier in the moving mass system than in the 
moving force system. 
 

βω kmm 2=
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For other classical boundary conditions other than Simply Supported end conditions, equation (5.45) 
clearly shows that the non-uniform beam resting on an elastic foundation and traversed by a force moving 
with variable velocity reaches a state of resonance whenever  

  βω kaj 2=  and βω )12( += kaj    (7.5) 

while equation (5.52) shows that the same non-uniform beam under the action of a moving mass 
experiences resonance effect whenever 

  βω kbj 2=  and βω )12( += kbj     (7.6) 

From equation (2.174) 
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This implies that 
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Evidently, from equation (7.6) and (7.8), the same results and analysis obtained in the case of a Simply 
Supported non-uniform Bernoulli-Euler beam are obtained for all other examples of classical boundary 
conditions. 
 
8.0 Numerical Calculations and Analysis. 
 In order to illustrate the theory in this paper numerically, it is assumed that the non-uniform 
elastic beam of length 12.2m is at rest and the equilibrium position of the longitudinal oscillating load 

20

1
0 =x  other data are as follows: m4102 −×=γ , 

4

3πβ = , 24 /2200 sm
EI =
µ

 and the ratio of the 

mass of the load to the mass of the beam is 0.25.  The values of axial force N and subgrade K, are 

between 0 and 20,000,000 and 0 and 3/000,400 mN  respectively. 

 

Fig 8.1: Transverse displacement of the simply supported non-uniform beam under the action 
of concentrated masses moving at variable  velocities for various values of axial force N for 

fixed K (40000)
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 Figures 8.1, 8.3, 8.5 depict respectively the deflection profiles for Simply Supported, Clamped-
Clamped and Cantilever non-uniform beams under the actions of concentrated loads travelling at varying 
velocities for various values of axial force N and for fixed K (40,000).  The figures show that as N 
increases, response amplitudes of the non-uniform beam decrease.  In a similar  

 
 

 
manner, as the foundation moduli K increase, for fixed value of N, the displacement response of Simply-
Supported, Clamped-Clamped and Cantilever non-uniform beams under heavy masses moving at varying 
velocities decrease as shown in figures 8.2, 8.4, and 8.6.  In figure 8.7, the transverse displacement of 
moving force and moving mass cases for Simply-Supported non-uniform beam traversed by a load 
moving at varying velocities for fixed N = 200,000 and K = 40,000 is displayed.  Clearly, the response 
amplitudes of moving mass are higher than that of the moving force.   
 
 
 

Fig 8.2: Deflection profile of the simply supported non-uniform beam under the action of 
concentrated masses moving at variable velocities for various values of foundation moduli K 

and for fixed N (200000)
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Fig. 8.3: Transverse displacement of the clamped-clamped non-uniform beam under the action 
of concentrated masses moving at variable velocities for various values of axial force N for 

fixed K (40000)
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The same result is obtained for other illustrative boundary conditions of Clamped-Clamped and 
Cantilever in Figures 8.8 and 8.9 for the same beam model, as in paper [15].  In general, higher values of 
axial force N and foundation modulus K are required for a more noticeable effect on the response 
amplitudes of the beam in the case of other boundary conditions than those of Simply-Supported end 
conditions. 

 

 
9.0 Conclusions. 
 In this study, analytical solution has been obtained for the dynamic behaviour of non-uniform 
Bernoulli-Euler beams subjected to concentrated masses travelling at varying velocities.  The method 
proposed is very versatile and is capable of tackling this class of problem for any of the classical 
boundary conditions often encountered in structural design.  It has enormous advantages over the 
numerical techniques as solutions obtained by it shed light on vital information about the vibrating 
system.  The effects of various parameters, such as inertia, foundation moduli and axial force on the  
 

Fig. 8.4: Deflection profile of the clamped-clamped non-uniform beam under the action of 
concentrated masses moving at variable velocities for various values of foundation moduli K 

for fixed N (200000)
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Fig. 8.5: Transverse displacement of the clamped-free non-uniform beam under the action of 
concentrated masses moving at variable velocities for various values of axial force N for fixed K 
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dynamical system are investigated.  It is found that, generally, as foundation moduli K and axial force N 
are increased, the response amplitudes of the vibrating system decrease.  Also, in all the illustrative 
examples considered, for the same natural frequency, the critical speed for moving mass problem is 
smaller than that of the moving force problem.  Hence, resonance is reached earlier in the moving mass 
problem.  Thus, accurate evaluation of the moving mass problem is desirable as approximation by the 
moving force solution is highly misleading. 
 
 
 
 
 
 

Fig. 8.5: Transverse displacement of the clamped-free non-uniform beam under the action of 
concentrated masses moving at variable velocities for various values of axial force N for fixed K 
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Fig. 8.6: Deflection profile of the clamped-free non uniform beam under the action of 
concentrated masses moving at variable velocities for various values of foundation moduli K 

for fixed N (20000)
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