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 Abstract 
The configuration studied is that of a non-homogeneous infinite solid 
containing a central hole and a semi-infinite crack, originating from one side 
of the hole.  Longitudinal shear loads of magnitude Tj, j = 1, 2 are applied on 
parts of the crack surface.  It is found that the dominant fracture 
characteristic is that of a hole or semi circular notch.  The maximum stress 
σσσσψψψψz(R, 0) expected at the hole-interface junction, where further cracking is 
likely to commence, is derived in a closed form.  The case of the stress when 
the lower crack surface is not loaded (T2 = 0) is presented in a graph to enable 
understanding of the stress ratio σσσσψψψψz (R, 0)/T1 as the radius of the hole grows 
and/or as the load site varies. 

 
  pp 69 – 78 
 
1.0 Introduction 
 A non-homogenous infinite solid is made from two half planes of different isotropic and elastic 
materials each having a semicircular notch that form a central hole of radius a when the materials are 
bonded along the real axis.  The left side detaches completely thereby forming a semi-infinite crack that 
terminates at one side of the hole while the interface on the right side remains perfectly bonded.  A pair of 
longitudinal shear loads of magnitudes Tj , j = 1, 2 are applied along the cracked surface on intervals [-bj, -
aj], j = 1,2 not necessarily equal nor symmetric about the crack line as depicted in Figure 1.1(a) 
 
 
 
 
 
 
 
 
 

Figure 1.1(a): Geometry of the Problem On The z – plane Showing the Circular Hole and Load sites 
[-bj, -aj], j = 1, 2 

 

 

 

 

Figure 1(b): Local Polar Coordinates (R, ψψψψ) At Hole-Interface Junction And Original Polar Coordinates (r, θθθθ) 
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The fields near the hole-interface junction are investigated for crack initiation features.   Our method uses 
conformal mapping, Mellin transform and residue theory to analyse the governing boundary value 
problem.   This technique has been successfully applied in the homogeneous complement of the solid 
being studied [1].   Homogeneous infinite solids with holes of various shapes and finite line cracks have 
been investigated by several authors (see for example [2, 3, 4, and 5].  In [3] Bowie studied the plane 
problem of finite radial cracks emanating from the boundary of a circular hole in an infinite homogeneous 
elastic plate under uni-axial or biaxial tension employing Muskhelishvili’s [6] complex variables method.  
Rice [5] investigated an elliptical hole in an infinite homogeneous solid under remote biaxial in plane 
tensions and anti-plane shear.  The endeavour here is to investigate the effect of the presence of a semi-
infinite crack and a hole on the fields. 

2.0 Mathematical Formulation 
 The convention followed is that the subscript 1 refers to the material occupying the upper half 
plane while subscript 2 refers to that occupying the lower half plane.  The governing boundary value 
problem is then derived in polar coordinates as: 
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use has been made of the relations  
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The original z – plane of analysis is transformed onto a plane with a semi-infinite crack terminating at the 
origin (Figure 2) by the holomorphic mapping function  
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Figure 2: The ρρρρφφφφ - plane showing some correspondences from Figure 1 
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In view of W (r, θ) ≡ Wj (ρ, θ)  j = 1,2 we use (2.5a,b) to get 
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With these relations the ρ φ - plane equivalent of the problem is obtained as: 
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The asymptotic behaivours are Wj(ρ φ ) = O(ρ1/2) as ρ → 0 and Wj(ρ φ ) = O(ρ-1/2) as ρ → ∞ , j = 1, 2. 
 
3.0 Analysis of the Transformed Problem 
 Next, the Mellin integral transform is applied to (2.6) – (2.8a,b,c) and the differential equation 
derived is: 
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Cramer’s rule, (3.6) and (3.7a,b) yield, for j = 1, 2 
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where γ  is a material constant parameter given by γ =(µ2 - µ1) / (µ2 + µ1).  The solution of (2.6) – 
(2.8a,b,c) is given by the inverse Mellin transform denoted  
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The integral in (3.4) can be evaluated by use of the convergent series [7] denoted  
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Components of (3.9a) may be needed in evaluating (3.8).  Therefore, (3.9a) is written in the form 
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whose singularities are simple poles at s = -1 and s = n, n = 1, 2, 3, … .  In view of (2.8a), the range αj  ≤ 
ρ ≤ βj, j = 1 , 2 is considered and Jordan’s lemma used to close contours in (3.8) in planes determined by 
joint occurrence of ρ < βj and ρ > αj.  When ρ < βjj, contours are closed in the left half plane Res < 0.  
Integrals to be evaluated are: 
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For ρ > αj, contours are closed in the right half plane Res > 0.  Integrals to be evaluated are: 
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The solution when 0 < ρ<1 is derived from (3.8) while observing that ρ < αj and ρ < βj , j = 1, 2   
simultaneously.  Therefore the appropriate expression for gj(aj,bj;s) to use is the one given in (3.9a) which 
has removable singularities.  Jordan’s lemma suggests closure of contours in the left half plane Res < 0.  
The integrals to be evaluated are: 
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The solution corresponding to 0 < ρ < 1 is 

 

[ ]









Ι−+Ι+−

Ι−+Ι+=

),()1(),( )1(
2

),( )1(),( )1(
2

 ),(

)2(
1

1

1)2(
2

2

2

)1(
22

)1(
11

φρ
µ

γφρ
µ

γ

φργφργ
µ

φρ

TTa

TT
a

W
j

j

  (3.11) 

Residue theory is applied to obtain 
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4.0 Fields at the junction of the hole and interface. 
 The junction of the hole and interface is approached as ρ → 0.  The effect is that 



Journal of the Nigerian Association of Mathematical Physics, Volume 9 (November 2005) 
Semi-infinite crack in a non-homogeneous infinite solid Nnadi James Nwawkuike  J of NAMP 

1,2    , sin 1/2)-
2

),( 2
2/1)1( ==Ι  j ;,b(ag jj jj

φρ
π

φρ  as ρ → 0 while 0    as  0),()2( →→Ι ρφρj .   

The displacements at the junction are therefore obtained from (19) as: 

[ ]
2

sin
))1();,()1(),( 2/1

2
1

22222
1

1111
φργγ

πµ
φρ −−+−+= ;,b(agTbagT

a
W

j
j as ρ→0  

 Let (R, Ψ) be local polar coordinates introduced at the junction of the hole and interface as shown 
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The corresponding stresses are derived from (4.1) by application of (2.3c).  The expressions are: 
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For j = 1, 2 and from (3.9a) the following result is obtained: 
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5.0 Conclusion 
 Displacement fields close to the hole-interface junction have been derived in a closed form and 
the stresses there shown to be non-singular as in the cases studied in [8,9] for half planes.  The results 
indicate that the hole cannot be absent in this problem. The case for which the hole is absent (a = 0) must 
be treated by other methods (see for example [10, 11], homogeneous or non homogeneous without kink).  
The dominant fracture character of the solid is therefore that of a hole or a semi-circular notch.  The 
normal stress along the interface and near the junction is maximum [5,8] and is expressed as  
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The stresses are shown to depend on material constants except when T1 = T2, a1 =  a2 and b1 = b2 
simultaneously, in which case dependence on material constants is suppressed due to symmetric loading. 

The graph in Figure 3 shows the variation of 1z ,0)/T(Rψσ  with 
1a

a
 (and with 

a

a1 ) for various values of 

a

b1  when .02 =T   These enable the understanding of 








1
z

0

T

R,
ψσ  in two cases: 

(i) as the hole radius, a grows (0.1 a1 ≤ a ≤ a1) when 
a

b1 is fixed for the load site [-b1,-a1,]; 

(ii)   when 
a

a1 draws near
a

b1 (b1 > a1 ≥ a). 

Some fields for the equivalent homogeneous materials (µ1 = µ2) are derived from (3.10), (3.11) and 
(4.2a,b) with γ = 0.  Whether homogeneous or non homogeneous, cracking may emanate from the hole 
interface junction, or its homogenous equivalent, when Tj becomes high and aj and bj have finite values, 
especially for small values of a. 
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