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 Abstract 

In this work the author introduced a subclass ( )βα ,pTn , a subset of class 

( )βα
nT  introduced and investigated by Opoola [1].  The author derives some 

coefficient inequalities and convolution properties for the class. ( )βα ,pTn  

using Salagean differential operator. 
 
pp 49 - 56 
 

1.0 Introduction 
 Let A  be the class of functions regular in the unit disk { }1: <= zzE  and of the form 
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    (1.1) 

Furthermore, Opoola [1] denote by ( )βα
nT  a subclass of A consisting of functions satisfying the 

following conditions. 
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10,0 <≤> βα  and the operator D  is the same as in ( )αnB  namely the Salagean differential 

operator defined as 

 ( ) ( ) ( ) ( ) ( ) ( )( )',', 110 zfDzzfDzzfzfDzfzfD nn −===    (1.3) 

Opoola in his remarks gave some other existing subclasses such as So, ( ),βB  ( ),βδ  and ( ),αnB  by 

varying the parameters α, β, and n in (1.2) see [1] for details. Also in [1] Opoola proved the following 
results. 
Theorem 1.1 

 ( )βα
nT  C S for n > 1 where S is the subclass of  consisting of univalent functions in E. 

Theorem 1.2 

 ( ) ( ) 11 ≥⊂+ nforTT nn ββ αα  

Theorem 1.3 

 ( )βα
nTf ∈ , then 

( )
...0,10,,Re ><≤∈>









αββα

α

Ez
z

zf
 

Let A(p) be the class of functions of the form 

D
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    { }( )..,2,1,,0 =∈≥ Nipak  

 

which are analytic in the unit disk { }1: <= zzE  Motivated by the earlier works of Opoola [1], Owa [2], 

Ahuja [3], Owa and srivastava [4] the author introduced a subclass ( )βα ,pTn  ⊂ ( )βα
nT  whose 

functions are of the form (1.4) and satisfy the same condition (1.2). 

 The following results are true for the Functions in the class ( )βα ,pTn  

Theorem A 

 ( ) 1,, ≥⊂ nSpT pn βα  where Sp is the subclass of ( )pA  consisting of univalent functions in E. 

Theorem B 

 ( )βα ,1 pTn+  ⊂  ( )βα ,pTn  for 1≥n  , Np ∈ . 

 In this work the author derives the coefficient inequalities and convolution properties for the 

subclass ( )βα ,pTn  using Salagean differential Operator defined by (1.3) and the method of mathematical 

induction. 
 
2.0 Coefficient Inequalities 
Theorem 2.1 

 If ( ) ( )βα ,pTzf n∈  and p-valently starlike of order β then. 
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Proof 
 By definition (1.3) it is sufficient to show that  
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holds true. 
From (1.4) and (2.2) we have that 
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and from (2.2) and (2.3) we have 
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for all Ez ∈ . Choose the values of z  on the real line ( )100 <≤= rrez i , then (2.4) implies 
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Since ∑
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k rakp  > 0, we have 
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By letting 1→r  through half line  in (2.6), we have 
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 which concludes the 

proof of Theorem 2.1 
Theorem 2.2 

  If  and p-valently convex of order β then 
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From (1.4) and (2.7) we have 
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By (2.8) and (2.9) we have 

( )100 <≤= rrez i

( ) ( )βα ,pTzf n∈

{ }( ).....,2,1,,10,0 =∈<≤≥ Nipak β
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for Ez ∈ , choose the value of z  on half line , then 
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By letting 1→r  through half line ( )100 <≤= rrez i  in (2.12) we have 
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 { }( ) 10,.....,2,1,,0 <≤=∈≥ βNipak  which concludes the proof of Theorem 2.2. 

 
3.0 Convolution Properties 
Theorem 3.1  

 If ( ) ( ) ( )mjpTzf jnj ,,1,, L=∈ βα , then ( ) ( ).,*...*1 jnm pTff βα∈  where 
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The result is sharp for functions 
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Proof 

( )100 <≤= rrez i
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 Our method of proof shall follow the work of Owa [2], Owa and Srivastava [4], and we shall use 
the principle of Mathematical induction in our proof of Theorem 3.1 
For 1=m , we see that 1β=p . For 1=m   Theorem 2.1 gives 
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Thus, by applying the Cauchy–Schwarz inequality we have 
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Therefore, if 
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That is, if 
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then ( )( ) ( )δα ,* 21 pTzff n∈ .  We also note that the inequality (3.3) yields 
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that is, if 
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then we have ( )( ) ( )δα ,* 21 pTzff n∈ . It follows from  
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which shows that ( )( ) ( )δα ,* 21 pTzff n∈  where 
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Therefore, the result is true for 2=m  . Suppose that the result is true for any positive integer m. That is 
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Then by means of the above technique, we can show that  where 
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This shows that the result is true for 1+m  Therefore, by mathematical induction, the result is true for 
any positive integer m .  
 Further, taking the functions  defined by (3.2) we have 
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Consequently, the result is sharp for functions  given by (3.2) 

 Letting ( )mjj ,...,2,1== ββ  in Theorem 3.1, we have  

Corollary A 

 If, ( ) ( ) ( )mjpTzf jnj ,,1,, L=∈ βα  then  where 
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The result is sharp for functions 
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Setting L1,1 == ip , and in Theorem 3.1 we have 
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The result is sharp for functions 
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Theorem 3.2 

 If ( ) ( ) ( )mjpTzf jnj ..,2,1, =∈ βα  then ( )( ) ( )ρα ,*...** 121 pTzfff m ∈  where 
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The result is sharp for functions 
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Proof 
 It is clear that the result is true for m = 1.  For m = 2, theorem 2.2gives 
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which implies 
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Since we have to get the largest ρ such that 
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From the above, we need to find the largest ρ such that 
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Further, noting that the function 
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Thus the result is true for 2=m . 



Journal of the Nigerian Association of Mathematical Physics, Volume 9 (November 2005) 
Convoluation properties of a subclass of an analytic functions     Abiodun Tinuoye Oladipo J of NAMP 

Next, by using mathematical induction, we conclude that( )( ) ( )ρα ,*...** 21 pTzfff nm ∈ . 

Also, it is easy to show that the result is sharp for functions ( )zf j  given by 3.18 

Corollary C 
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The result is sharp for functions 
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4.0 Conclusion 

The author has been able to establish the coefficient inequalities for the functions in the class ( )βα ,pTn  a 

subset of class ( )βα
nT  and its convolution behaviour. 
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