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 Abstract 
 

 We shall consider the operator  

   )()()())(( ttAttF ξξξ += &   (*) 

where  )Η,(∈ WLA(t)  is continuously differentiable in the uniform 

operator topology with W→H, a continuous dense injection. Both W and H 
are Hilbert spaces each with its own norm. At the same time we assume that W 
is a dense linear subspace of H, with A(t) selfadjoint when regarded as an 
unbounded operator on H and domain D(A(t)) =  W.  We consider F as an 
operator 

 );();();(: 222,1 WRLWRLHRWF →∩    (**) 
and show that this is Fredholm provided W ⊂  H  is  a  compact  embedding  

and  the limit operator A±  = )(lim tA
t ±∞→

is bijective.  

 
  pp 43 - 48 
 
1.0 Introduction 
 The operator F as defined in equation (*) has been extensively studied in both the finite 
dimensional case [13] and in the infinite dimensional situation [1, 5, 6, 7, 11], some of which are proved 
in [2, 3] as special cases of equation (**). Since W ⊂  H is compact, A(t) has compact resolvent  and thus 
has a discrete  spectrum consisting of real eigenvalues and the Fredholm index of the operator  F  can be 
characterized in terms of spectral flow [1].This will however not be proved in this paper. 
 We have made no assumptions on the eigenvalues of A(t) but we see from [4], that its spectrum 
can be unbounded below and above which would therefore show that the differential equation  

 )()()(
.

tXtAtX =  , 0)0( XX =     (1.1) 

which corresponds to the kernel of the operator  F, is not well-posed, that is will not in general have a 
unique solution  x ∈  C[0,T;W] ∩  C1[0,T;W]   for a given  x0 ∈  W. 
 
2.0 Some Preliminary Results. 
 Fredholm operators form a very interesting class and arise very frequently in applications. The 
reader is referred to [8, 9, 10, 12,14] for more details of the theory of Fredholm and linear operators. 

To show that A is bijective, we require the following lemma which will also be necessary to 
prove the main theorem. 
 
3.0 Lemma 
 Let X, Y, Z be Banach spaces. Suppose F ∈  L( X,Y ) is a bounded linear operator and K∈   
L(X, Z )  a compact bounded linear operator. If 
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   ||x||X  ≤  c[||Fx + ||Y  ||xK||Z ] , ∀  x ∈  X ,   (3.1.) 
c a constant, then F has closed range and finite dimensional kernel. 

Proof 
 It suffices to show that the unit ball in kerF is compact to show that dimKerF is 
finite. Let B = {x ∈  X:Fx = 0, ||x|| ≤  1}. Consider xn ∈  B, and then there exists a 
subsequence such that Kxnk converges since K is compact.  Therefore 
 ||xnk - xnl ||X  ≤  c||Kxnk - Kxnl ||Z → 0 as k, l →∞     3.2) 
Thus xnk is Cauchy and because X is complete, xnk →  x∈  X. Therefore B is compact. 
 Let yn = Fxn ∈  Range F such that yn →  y, it remains to prove that y ∈  Range F 
to show that Range F is closed. Suppose there exists a sequence ξ n ∈   Ker F such that xn 

+ ξ n is bounded.  Hence there exists a subsequence ỹnk =  xnk + ξ nk such that  Kỹnk →  z.  
Therefore Fỹnk →  y by our assumption.  Hence ỹnk is Cauchy and ỹnk →  x ∈  X and y = 

∞=n
lim  Fỹnk = Fx showing that y ∈  Range F. 

 That there exists a sequence ξ n ∈  Ker F such that xn + ξ n is bounded will now 

be proved.  Suppose not, then inf ||xn + ξ n || = cn has unbounded sequence. Without loss 

of generality cn ∞→ .We choose ξ n  such that cn  ≤  || xn + ξ n || ≤  2cn  

then K( xn + ξ n )/cn has a converging subsequence and F(xn + ξ n)/cn = F(xn )/cn  0→  as 

n ∞→ .  Therefore (xn + ξ n)/cn is Cauchy and converges to some x ∈  X and Fx =

0
)(

lim =
+

∞→ n

nn

n c

xF ξ
.  Hence for ξ  ∈  Ker F we see that  

   1lim ≥+
+

=+
∞→

ξ
ξ

ξ
n

nn

n c

x
x ,  

contradicting the fact that ξ ∈  Ker F. 
In addition to the above lemma we require the following. 
3.1 Lemma 
 Let W ⊂  H be a compact dense injection.  Suppose H is separable then  
  Ŵ = W1,2 ( [ 0,T]; H) I  L2 ([0,T];W) ⊂  Ĥ = L2 ( [0,T]; H) is compact. 
 Proof  

 Since H is separable, let e1, e2 ,e3,... be orthonormal basis for H. Let Pn ∈  L(H ) 

be the orthogonal projection ∑
=

=
n

j
jjn exexp

1

, and define Qn = Pn  |w:W H→ .  

Applying the general fact that if Tn:X → Y converges strongly to T:X →Y and K:W → X 

is compact 0lim ),( =−
∞→ YWLn

n
ToKoKT ,we obtain  

  0sup
1,

),( →−=−
=∈

Hn
xWx

YWLn xxQiQ  as n ∞→ . 

Let j be the embedding; j:Ŵ→Ĥ and En =  span (e1 ,e2 ,e3 ,...en).  Consider Pn o j : = Ĵ o 
Pn

:Ŵ →  W1,2[ 0,T ;En] →  L2[0,T;En ] ⊂  L2[ 0,T;H].  Since Ĵ is compact 

 

0

)()(

22
),(

2
);,0(

2
),(

0

22

→−≤−≤

−=− ∫

WHWLnWTLHWLn

T

HnHn

xioiPxioiP

dttxtxPxxP
         (3.3) 
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 as n → ∞ . Therefore 0lim ),( =−
∞→ HWLn

n
jojP and by the general fact above, j is 

compact.  Hence Pn o j is compact i.e.  Ŵ⊂  H is compact. 
 
4.0  Main Theorem 
4.1  Basic Assumptions and Notation 

   A(1) c0 = sup(||A(t)||L(W,H) + || A& (t)||L(W,H) ) < ∞   
   A(2) ||ξ ||2W ≤  c1(||A(t)ξ ||2H + ||ξ ||2H ) 

   ℘ = L2(ℜ ;H), ϖ  = L2(ℜ ;W)I W1,2(ℜ ;H) 
where c0 and c1  are constants. 
4.2 Theorem 

Assuming A(1), A(2), let )(lim tAA
n ∞→

± = in the uniform operator topology where 

),()( HWLtA ∈ and if ±A are bijective then ℘→ϖ:F defined by )()()())(( ttAttF ξξξ += &  is a 
Fredholm operator. 
 Proof 

It is sufficient to prove that for some constant c > 0 and large enough T > 0, 

   ][
)],,([2 HTTL

Fc −℘ +≤ ξξξ ϖ               (4.1) 

Then by Lemma 3.0 and 3.1, range F is closed and dimker F < 0 if we observe that here 
YX =℘= ,ϖ  and Z = L2([-T,T],H) where K: Z→ϖ  is compact.  A similar inequality 

holds for ηηη AF −=′ &  [3], which is the adjoint of F. Thus co-kernel of F is also finite 

dimensional, therefore F is Fredholm for )(tξ with compact support.  Now consider 

∫

∫

∫

∞

∞−

∞

∞−

∞

∞−
℘

−+=

++=

+=

dtttAtttAt

dtttAttAtt

dtttAtF

HHH

HHH

H

))()(),(2)()()((

))()()()(),(2)((

)()()(

22

22

22

ξξξξ

ξξξξ

ξξξ

&&

&&

&

   (4.2) 

By assumption A(1) we obtain 

∫

∫

∫

∞

∞−

∞

∞−

∞

∞−
℘

+−−+≥

−−+≥

−+≥

dtt
c

t
c

c
t

dtt
c

t
c

ttAt

dtttcttAttF
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HWHH

HWHH

))()
2
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1
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ε
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ε
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&

&

 (4.3) 

by A(2)        
2

2
2

1 )()( ℘−≥ tktk ξξ ϖ  
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where .
2

1
2

2

1 0
2

1
0

0

1
1 εε

εε c
kand

c
cthatsochosenwith

c

c
k +=<−=  

Therefore 

  
2

2
22

1 )())(()( ℘℘ +≤ tktFtk ξξξ ϖ  

( )
( ) 2

1

2
2

22
2

)())(()(and

)())(()())((

℘℘

℘℘℘℘

+≤

+≤




 +≤

ttFct

ttFkttFk

ξξξ

ξξξξ

ϖ

           (4.4) 









=

1

2where
k

k
c . 

Now consider the special case where A(t) = A, independent of t to show that if 
HWA →:  is non-singular then F is bijective and since W is a Hilbert space.  

  

HW

W

AiwwAiww

Aiw

AiwAiw

iww

ξξξξξξ
ξξξ

ξξξξξξξ

ξξξ

+≤⇒+≤∴

+≤

+=+≤

=

,,,

,
2

            (4.5) 

for all real constant w.  By the inverse mapping theorem, there exists a constant k0 such 

that 
HW

tAkt )()( 0 ξξ ≤ .  Therefore since A is selfadjoint, for all real constant w,  

H

HWH

HH

HHW

tAtiwk

tAtiwtiwktAtiwk

tAtiwtiwtAtiwk

tAtiwtAktw

)()()12(

)()()()()(

)()()()()(

)()()()()1(

0

00

0

0

ξξ

ξξξξξ

ξξξξξ

ξξξξ

++≤

++++≤

++−+=

++≤+

 (4.6) 

Hence 
HW

tAtiwkt )()(2)( 0 ξξξ +≤ .  Using Fourier transform for )(tξ ; 

∫
∞

∞−

−= dtteiw iwt )(
2

1
)(ˆ ξ

π
ξ  and related properties together with Plancherel’s theorem; 

∫∫
∞

∞−

∞

∞−

= dttdwiw
22

)()(ˆ ξξ , )(ˆ)(ˆ iwiwt ξξ =&  if )(tξ  has compact support. Therefore 

∫
∞

∞−







 += dtttt
WH
222 )()()( ξξξ ϖ

&  

∫∫

∫∫

∞
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 ++≤
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 (4.7) 
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dttFkdttAtk
HH ∫∫

∞

∞−

∞

∞−
+=++≤ 22

0
22

0 )()12()()()12( ξξξ&  

Therefore ( )2
01

2

1

2
21,)( kkFkt +=≤

℘
ξξ ϖ . Hence F and similarly ±F are bijective.  

This implies that for large enough T > 0 and)(tξ = 0 for Tt ≤  

    ℘≤ ξξ ϖ Fk2     (4.8) 

where ( ) .2

1

12 kk =  

Let T be fixed and define .,)(;,)( TtAtATtAtA −≤≤−≥≤− −+ εε  

Suppose )(tξ = 0 for Tt ≤ , then 
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dtttAtF

T
H

T
WH

T
H

T
H
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&
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&

 (4.9) 

Hence (4.8) is proved.  
Now making use of cut off functionβ : ]1,0[→ℜ such thatβ (t) = 1 for 

1−≤ Tt  and β (t) = 0 for Tt ≥ , )()1()()( ttt ξββξξ −+=  implies that, 

  ( )
℘℘℘

−++≤

−+≤

))1(()(

)()1()()(

2 ξββξβξ

ξββξξ ϖϖϖ

FkFc

ttt
  (4.10) 

by (4.4) and (4.8).But )())()(()()()())(( ttAttAttF ξβξξββξβξβξ ′++′=+′= . 

Similarly ( ) )())()()(1()()1( ttAttF ξβξξβξβ ′−+′−=− .  
Hence  

 
℘℘℘℘℘℘

+≤−+≤ ξξξβξξβξ 43 )1(( cFFandcFF  (4.11) 

for some constants c3 and c4 . If ξ  has compact support in ([-T,T],H) then Theorem 4.2 is 
proved. 

 The fact that Fredholm index is invariant under continuous deformation of the operator family 
[13] will now be used to prove an easy consequence of the main theorem. 
4.3  Theorem  
 Suppose the eigenvalues of A(t)  are  non-zero  for all  t ℜ∈  then the Fredholm  index of  F  is 
Zero. 
 Proof 

 Consider a sequence of Fredholm Operators ℘→ϖλ :F  defined by 

   )t()t(A)t()t)(F( ξ+ξ=ξ λλ
&     (4.12) 

which are continuously deformed to each other and using the fact above we are done. Let a cutoff 
function as described above be chosen such that 
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−≤−−
≥−

=
TttAt

TttAt
tA

,)()](1[(

,)()](1[(
)(

λβ
λβ

λ              (4.13) 

Suppose that we set λ  = 0, then A(t) = A(0), for all t ℜ∈ . Since A(0) is bijective by our 
assumption, Fo is bijective and thus index Fo = dim Ker Fo - dim co-Ker Fo = 0. 
 Now consider 





−≤−−−
≥−−

=−
TtTAtAt

TtTAtAt
tAtA

),()()(1

,)()()(1
)()( 1 β

β
   (4.14) 

For sufficiently large T > 0 

∫ ∫
∞

∞−

∞

∞−
℘

ξ−≤ξ−ξ=ξ−ξ dt)t(A)t(Asuplimdt)t()t(A)t()t(AFF
2

H

2

)H,W(L1

2

H1

2

1  

    
22 )t(
ϖ

ξε≤      (4.15) 

Therefore F1 = F + (F1 - F) is Fredholm and index F = index F1.  Also 
    )T(A)t(Alim

t
λ±=λ±∞→

 

is bijective, by assumption for eachλ .  From the main theorem therefore λF is Fredholm 

and from the general fact index F = index =∀= λλ   ,0F  0 , 1 , 2 .... since index Fo  = 0. 
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