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 Abstract 
 

Let ( )pET  be the body of the supertangent bundles ( )ET  and ( )ET , where 

E is a −ρ supermanifold.  Let MTx  be the tangent space to the Lorentzian 

manifold M at Mx ∈ .  In the case m = n = 4, where m and n are the integers 

labelling the associated superspace, we identify pxET  with MTx  and 

proceed to construct a Clifford bundle of algebras on the tangent space of the 
body of the supertangent bundle. 
 
pp 31 – 36 

 
1.0 Introduction 
 In 1975, T. T. Wu and C. N. Yang [1] asserted that a principal fiber bundle ( )GXP ,  where X is 
the base space and G is the structure group (the guage group) describes a pure guage theory.  It was 
consequently found imperative in order to meet the demands of supersymmetry to go beyond the concepts 
of manifold and space-time into those of supermanifold and superspace.  The most fruitful approach to 

supermanifolds and superspaces has been that initiated by Rogers [2] in which ∞G -supermanifolds are 
topological spaces locally G-diffeomorphic to superspaces.  Jadcyzk and Pilch [3] pointed out that a 
certain theorem in Rogers, approach is valid only for a particular class of open sets.  However, the 

deficiency that a body was not guaranteed for ever ∞G -supermanifold still remained.  A generalized 
theory of supermanifolds and superspaces was formulated by Hoyos et al [4], [5] and [6] in a series of 

three fundamental papers.  In their approach they defined −ρ supermanifolds and ∞G -functions defined 
on them; −ρ supermanifolds being supermanifolds with well-behaved, that is, operative, bodies.  After 

expatiating on ∞G -vector fields and ∞G -derivations on supermanifolds, they introduced supervector 

bundles, that is, BL -bundles whose ∞G -sections are the ∞G -vector fields.  Finally, they discussed the 
two supertangent bundles and the cotangent bundle on −ρ supermanifolds. 
 Mosna and Rodrigues, Jr [7] discussed extensively the bundles of algebraic and Dirac-Hestenes 
spinor fields.  The purpose of the present paper is to identify in the case m = n = 4 the body of the two 

supertangent bundles ( )ET  and ( )ET  with the tangent bundle TM of Ref. [7] where M is a Lorentzian 

manifold; and consequently be in a position to define the Clifford bundle of algebras on ρETx .  Let us 

note that m and n refer respectively to the integers labelling the even and the odd coordinates of the 

superspace nmS ,  which will be discussed in detail later.  We may note that the sections of the Clifford 
bundle, the Clifford fields Ξψ , satisfy the Dirac-Hestenes equation. 
 In their discussion of Clifford and other bundles [7], they considered the four-dimensional, real, 
connected, paracompact, and noncompact manifold M.  (As an example of a paracompact space one 
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may note that R m  is paracompact [8].  Let us note that for m = 4, R ≡m  R 3,1  is the Minkowshi 
spacetime.  Since we wish to construct the Clifford bundle of algebras on the body of superbundles on 
generalized supermanifolds, which are manifolds endowed with both commuting and anticommuting 
coordinates, let us start with a few preliminary definitions and concepts [5], [6].  We shall limit 

ourselves to N = 1 supersymmetry.  Hence, it will be necessary to extend Minkowski spacetime R 3,1  to 
superspace ( )θ,x   where, in addition to the spacetime coordinates ( )xxx ,0= , we also have the 

Grassmann-valued coordinates θ  with n = 4 in the superspace nmS , . 
 Suppose B is a Z2-graded Banach algebra, then Ba ∈  is said to be homogeneous if 

( )2,1=∈ rBa r .  Suppose J is a fixed (finite or countably infinite) set of indices while F(J) is the set 

of finite parts of J, then a Grassmann-Banach algebra is a 2Ζ -graded commutative Banach algebra 
satisfying the following two properties. 

(i) There exists a linearly independent subset { } 1BJii ⊂∈β  such that the set { } FMM ∈β  is a 

 Banach basis for B where 1,0, 21 =≠= Θβββββ
riiiM L  and { } FiiiM r ∈= ,,, 21 L  

 with rii pLp1 . 

(ii) For each FH ⊂  and Ba MFM M ∈=∑ ∈ βα , the body of a  is by definition 

 ( ) ∑ ∈=
HM MMHp a βα .  The linear function BBpr H →≡ :  is called the body map. 

 Suppose B is a Grassmann-Banach algebra, then Banach −2Z graded left B-module is a Banach 

space V which is also a left B-module and which can be written as the direct sum 10 VVV ⊕=  with 

=⊂ + srVVB srsr ,, integers mod 2.  Also, .,, VvBavaav ∈∈≤   In the sequel, we shall 

concentrate on free superspaces.  Hence, one should note that a −2Z graded −B module V is said to be 

free if it has a basis whose elements are homogeneous.  We may note that by the basis of a −B module 
we mean the sequence{ }nmmm eeee ++ ,,,,, 11 LL , where 1e  is even for mi ≤≤1  and odd for 

.1 nmim +≤≤+   Superspaces are a subclass of objects called −B spaces, in a category [9] whose 
morphisms are −BL  operators ( −B linear operators between −B spaces).  Hence, it will be helpful to 

recall the following definition of −B spaces [4]. 
 Suppose we are given an m + n sequence { }nmppp += ,,, 21 Lπ  of −β projections, that is, 

Hp  projections, of B and ( )πV  is the following Banach subspace of 

( ) { }∑
+

= ∈∈= nm
i iii

i paVeaVV
1

Im|: π .  A −B space of dimension ( )σπ ,  is the quotient Banach 

space ( ) ( ) ( )./, σπσπ VVV =   We now consider a −B space with a body.  Let ( )σπ ,V  be a −B

space, cF  a real vector space, t a linear map from R nm+  onto cF and p the canonical projection of 

( )πV  onto ( )σπ ,V .  Then c is called a k-body map of ( )σπ ,V  and cF  the body of ( )σπ ,V  if c is 

onto and .dim cFk =   Moreover, with p being the quotient projection, ( )πvRtpc |⋅=⋅  where 

( ) ( ) cv FVRt →⋅ ππ :|  and ( ) cFVc →σπ ,: .   

Here R is the body map associated with the fixed basis { } nm
iie +
=1  of V:  
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    ( ) ( )( )nm
nm

i
i

i arareaR +
+

=
=∑ ,,)( 1

1

L .   

 

We are now in a position to define a superspace.  It is a bodied −B space ( )rS ,  where ( ) ,, 0σπVS =  

the elements of the m + n sequence being ( ),iKFi pp ≡ ρ JKi ⊂≠  for ,1 nmim +≤≤+  and r is 

defined by :t  R →+nm  R ( ) ( ).,,,, 11 mnm
m xxxxt LL =+   Superspaces are a subclass of −B

spaces, the latter being objects in a category whose morphisms are BL  operators defined as follows: 

 Let V and V ′ be −B modules, then a −B linear operator from VV ′→  is a continuous linear 
operator ( )VVLT ′∈ ,  such that ( ) ( ) .,, VvBavaTavT ∈∈=  

 The set of −B linear operators from VV ′→  is deonoted by ( )VVLB ′, .  Let us now recall the 

definition of a −∞G supermanifold [6].  Suppose S is a superspace and E is a −∞C manifold modelled 
on S.  (Heuristically, this means that E is obtained by taking the union of patches of S subject to the 

operation of an equivalence relation between the patches). (a) A −∞G atlas on E is a −∞C atlas 

( ){ } Λ∈αψαα ,U  on E such that 1−= αββα ψψψ  is ∞G  from ( )βααψ UU ∩  to ( ),βαβψ UU ∩  

(b) A −∞G structure on E is a maximal −∞G atlas on E.  (c) A −∞G supermanifold E is a Banach 

−∞C manifold endowed with a −∞G structure.  A free −∞G supermanifold is such that S is free. 
 Let us also note what is meant by an open subset SU ⊂  of a superspace being G-connected 

[5].  We first note that the r-saturation of U is ( )( ).1 UrrU −=   Then U is said to be G-connected (G-

convex) if, for all ( ) ( ){ } UxUx ∩∈ θθ ,~,,  is connected (convex), note the tilde on ( ).,θx   The last 

important definition which we wish to recall is that of a −ρ supermanifold [6].  Suppose E is a −∞C

manifold modelled on a superspace ρES nm ,,  a −∞C manifold modelled on R m  and ρ  a −∞G map 

from .ρEE →   A −ρ atlas on the triple ( )ρρ ,, EE  is a pair comprising a −∞C atlas 

( ){ }αα ψ,U  on E and a −∞C atlas ( ){ }ραρα ψ,U  on ρE  such that (i) ( )ααψ U  is cG-connected 

(that is, both G-connected and connected), (ii) ( )ραα ρ UU 1−=  and (iii) ααρ ψρψ ⋅=⋅ r  (where r is 

the body map on ),nmS .  A −−∞ ρG structure on the triple ( )ρρ ,, EE  is a maximal −ρ atlas, 

while a −ρ supermanifold is a triple ( )ρρ ,, EE  with a −−∞ ρG structure on the triple. 

 
2.0 Supervector bundles and the Clifford bundle 
 The purpose of this article is to identify he body of the supervector bundles T(E) and ( )ET  
with the tangent bundle TM in the case m = n = 4, and proceed to construct a Clifford bundle of 
algebras on the said body.  In their exposition of the algebraic and Dirac-Hestenes spinor fields, Mosna 
and Rogrigues Jr. [7] defined the Clifford bundles Cl(M,g) in two ways.  In one of these, with (M,g) 
being a Lorentzian manifold, the corresponding Clifford bundle is defined as a disjoint union for all 

Mx ∈  of the Clifford algebras ( )xx gMTCl , , that is,  
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     ( ) ( )U
Mx

xx gMTClgMCl
∈

= ,,  

where MTg 0,2sec∈  is the Lorentzian metric of signature (1,3), (with sec denoting section), gx is the 

restriction of g to x and MT 0,2  is the 2-covariant tensor bundle.  It was also shown that to each Dirac-

Hestenes spinor field ( )MeSpin
lCl

3,1
sec∈ψ  and to each spin frame ( )MP eSpin 3,1

sec∈Ξ  there exists 

a well-defined ( ).,sec gMCl∈Ξψ   We may note that the vector bundle ( )MeSpin
lCl

3,1
 is the left real 

spin Clifford bundle of M and Ξψ  a well-defined sum of even multivector fields. 

 Let T be a functor from the category of −ρ supermanifolds into the category of 

supervector bundles.  If E is a −ρ supermanifolds, then the −∞G sections of the supervector 

bundles T(E) and ( )ET  are applicable to super-symmetry.  In the approach to superfiber bundles 
expatiated upon by Hoyos et al [4], [5] and [6], Clifford algebras do not feature.  Rather, a supervector 
bundle, for example, is constructed on a base which is a −ρ supermanifold.  In fact, a supervector 

bundle or an −BL bundle, having E a −ρ supermanifold as a base, and fiber a B-space F, is 

denoted by ( )Π,, FEM  and is such that there exists a trivializing covering ( ){ }iiU τ,  for Π  

such that the mapping ( ) →θ,x  the transition functions, a vector bundle morphism,  

  ( ) ( ) ( ) ( )01 :,, FLcUUxxx Bjijiij −→∩= − θτθτθψ   

are ., jiG ∀∞   Here now Π  denotes the canonical projection: .: E→ΜΠ  Also, for a given body c of 

F, the subspace ( ) ( ) ( ){ }.00|)( =∀=∈=− ucTucFLTFLc BB   We also note that since  is a 

trivializing map, ( ) .: 1 FUU iii ×→Π−τ  

 The first two superbundles of interest are the two supertangent bundles T(E) with fiber being the 

superspace ),nmS , ( )ET  which is modelled after the fiber 

{ }.10|
1∑
+

= +≤≤+=∈= nm
i Kiiii nmimaVeaS β   Let us note that if E→Μ  is a supervector 

bundle and the functor ( )Μ→Μ L  comprises continuous linear forms, then L(M) is called the dual 
bundle.  In particular, if M = T(E) is the tangent bundle, then the dual bundle T*(E) is the cotangent 
bundle.  It is the third of the three superbundles considered in [6] and its fiber is ( )BSLS B ,* = .  (In 
connection with the terminology supervector bundles for these superbundles having the quotient Banach 
space ( ) ( ) ( )σπσπ VVVF /, ==  as a fiber, let us note that a Banach space is a topological vector 
space [9]). 
 Suppose 21: EEf →  is a vector bundle morphism where ( )2,1=iEi  are −ρ
supermanifolds, then we can define the following: 
 .: 21 TETETf →   It is usual to denote Tf by f*.  With the transition function ijψ  being 

an example of a vector bundle morphism, it is clear that, with ( ){ }jiU ψ,  being the −ρ atlas of 

E, the transition function for the tangent bundles T(E) and ( )ET  are ∗ijψ .  Let us now note that 

a section X of a supervector bundle is the mapping:   
 

iτ
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      .: MEX →    
Let us also recall that if E is a −ρ supermanifold, then a differential form of degree r or simply an r-

form is a section of ( )( )ETLr
α  where the functor rLα  comprises r-multilinear continuous alternating 

forms.  These r-forms are denoted by ( ).ErΩ   The spaces of −∞G sections of T(E), ( )ET , and T*(E) 

constitute respectively the spaces of supervector fields ( ) ( ),, EE χχ  and 1-superforms ( ).EΩ  

 As noted in Ref [6], if M is a supervector bundle while cF  is the body of its fiber F, then there 

exists an associated real vector bundle Mc with base ρE  and fiber Fc such that the transition functions 

are ( ) .ijcψ   Here ( ) ( ) cv FVRt →⋅ ππ :|  or alternatively cFFc →:  where c is a k-body map of 

( )σπ ,VF =  with k being dim Fc.  The body Rtr ⋅=  for T(E) and ( )ET  where t is the projection on 

the first m( = 4) coordinates is the usual tangent bundle ( ).ρET   Hence, if the spacetime part of the 

superspace coordinate ( ),,θx where { } 4,,1, L=aαθ  are the Grassmann valued coordinates, is chosen 

to be a Lorentzian manifold, we can identify this ( )ρET  with the tangent bundle TM. 

 Let M be a Lorentzian manifold and ( )ϕ,U  a chart at .Mx ∈   Let v be a vector in the vector 

space in which ( )Uϕ  lies.  We say that the triples ( )vU ,,ϕ  and ( )wV ,,ψ  are equivalent if the 

derivative of 1−ψϕ  at ( )xϕ  maps v into w.  An equivalent class of such triples is called a tangent vector 
of M at x.  The set of such tangent vectors is called the tangent space of M at x, and is dented by TxM.  
The tangent bundle TM is then the disjoint union  

     U
Mx

xMTTM
∈

= . 

 On the other hand, let ( )xx gMTCl ,  be the Clifford algebra associated with ( )., xx gMT   It is 

to be emphasized that ( )ρET  has now been identified with TM for m = n = 4.  Once this identification 

has been made we can now proceed to construct the Clifford bundle of algebras on the tangent space 
( )ρETx  where .ρEx ∈   The first step, therefore, in defining ( )xx gETCl ,ρ  is first to give the 

definition of the exterior algebra of ,ρETx  that is,  

     ρρ ETET x

n

i

i
x ∑

=
Λ=Λ

0

, where  

ρETx
iΛ  is the space of −i parts of the multivectors ρETX xΛ∈  [11].  After defining both the grade 

evolution and the reversion operator on this exterior algebra, the algebra of multivectors is defined 
followed by the definitions of the exterior product, the contracted products, and the Clifford product.  
The desired Clifford algebra is the unital associative algebra which is the vector space of multivectors 
over ρETx  and which is endowed with the Clifford product. 
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