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Abstract

Let T(Ep) be the body of the supertangent bundles T(E) and 'IT(E) , Where

Eisa o —supermanifold. Let TyM be the tangent space to the Lorentzian
manifold M at XM . Inthe case m = n = 4, where m and n are the integers
labelling the associated superspace, we identify TXEp with TyM and

proceed to construct a Clifford bundle of algebras on the tangent space of the
body of the supertangent bundle.
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1.0 Introduction
In 1975, T. T. Wu and C. N. Yang [1] asserted that a principa fiber bundie P(X,G) where X is

the base space and G is the structure group (the guage group) describes a pure guage theory. It was
consequently found imperative in order to meet the demands of supersymmetry to go beyond the concepts
of manifold and space-time into those of supermanifold and superspace. The most fruitful approach to

supermanifolds and superspaces has been that initiated by Rogers [2] in which G -supermanifolds are
topological spaces locally G-diffeomorphic to superspaces. Jadcyzk and Pilch [3] pointed out that a
certain theorem in Rogers, approach is valid only for a particular class of open sets. However, the

deficiency that a body was not guaranteed for ever G* -supermanifold still remained. A generalized
theory of supermanifolds and superspaces was formulated by Hoyos et a [4], [5] and [6] in a series of
three fundamental papers. In their approach they defined 0 — supermanifolds and G* -functions defined
on them; o — supermanifolds being supermanifolds with well-behaved, that is, operative, bodies. After

expatiating on G -vector fields and G* -derivations on supermanifolds, they introduced supervector

bundles, that is, Lg-bundies whose G -sections are the G* -vector fields. Finally, they discussed the
two supertangent bundles and the cotangent bundle on p — supermanifolds.

Mosna and Rodrigues, Jr [7] discussed extensively the bundles of algebraic and Dirac-Hestenes
spinor fields. The purpose of the present paper is to identify in the case m = n = 4 the body of the two

supertangent bundles T(E) and f(E) with the tangent bundle TM of Ref. [7] where M is a Lorentzian
manifold; and consequently be in a position to define the Clifford bundle of algebras on TXEp. Let us
note that m and n refer respectively to the integers labelling the even and the odd coordinates of the
superspace S™M which will be discussed in detail later. We may note that the sections of the Clifford

bundle, the Clifford fields¢/=, satisfy the Dirac-Hestenes equation.

In their discussion of Clifford and other bundles [7], they considered the four-dimensional, real,
connected, paracompact, and noncompact manifold M. (As an example of a paracompact space one
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may note that RM is paracompact [8]. Let us note that for m = 4, RM= R13 is the Minkowshi
spacetime. Since we wish to construct the Clifford bundle of agebras on the body of superbundles on
generalized supermanifolds, which are manifolds endowed with both commuting and anticommuting
coordinates, let us start with a few preliminary definitions and concepts [5], [6]. We shal limit

ourselvesto N = 1 supersymmetry. Hence, it will be necessary to extend Minkowski spacetime R to
superspace (x, 9) where, in addition to the spacetime coordinates X = (xo,x), we aso have the
Grassmann-valued coordinates 8 with n = 4 in the superspace S™".

Suppose B is a Z,-graded Banach algebra, then allB is said to be homogeneous if
adB' (r = 12). Suppose J is a fixed (finite or countably infinite) set of indices while F(J) is the set
of finite parts of J, then a Grassmann-Banach algebra is a Z,-graded commutative Banach algebra
satisfying the following two properties.

(i) There exists a linearly independent subset {/3 }iDJ 0 B! such that the set {Bu }M OF isa

Banach basis for B where By = 5.5, f, #0, fo =1 and M ={i1,i2,---,ir}D F

with ip <+ <, .

(ii) For eech HOF and a= ZMDF ayBuw UB, the body of a is by definition
Py (a) = ZMDH am By - Thelinear function r = py : B — B iscalled the body map.
Suppose B is a Grassmann-Banach algebra, then Banach Z, — graded left B-module is a Banach

space V which is also a left B-module and which can be written as the direct sum V =vO vl with
B'VS OV *S, r,s=integers mod 2. Also, |lav| <[a|v| aDB,vOV. In the sequel, we shall

concentrate on free superspaces. Hence, one should note that a Z, —graded B —module V is said to be
freeif it has a basis whose elements are homogeneous. We may note that by the basis of a B —module
we mean the sequence{el,---,em,em+1,---,em+n} , where € is even for 1<i<m and odd for
m+1<i<m+n. Superspaces are a subclass of objects called B — spaces, in a category [9] whose
morphisms are Lg — operators ( B — linear operators between B — spaces). Hence, it will be helpful to
recall the following definition of B — spaces [4].
Suppose we are given an m + n sequence 7T={p1, P2, pm+n} of [ —projections, that is,
PH projections, of B and V(IT) is the following Banach subspace of

Vv :V(7T) = {zin:ina g OV |g Olm pi}. A B —space of dimension (ﬂ,a) is the quotient Banach
space V(r[,a) :V(IT)/V(J). We now consider a B — space with a body. Let V(IT, 0') bea B-
space, F. areal vector space, t alinear map from R M onto Fc and p the canonical projection of
V(7T) onto V(iT,J). Then c is called a k-body map of V(r[,J) and F; the body of V(r[,J) if cis

onto and k=dimF.. Moreover, with p being the quotient projection, ¢l =tER|V(ﬂ) where
tRy():V(7) -~ Fc and c:V(m0) - Fe.

Here Ris the body map associated with the fixed basis {g }'1;" of V:
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(Y, ale)= ()l )

i=1

We are now in a position to define a superspace. Itisabodied B — space (S,r) where S:V(n,a)o,
the elements of the m + n sequence being p; = pF(Ki),pi Ki OJ for m+1<i<m+n, andr is
deﬂnaj by t Rm+n - Rm,t(xl,-..xm_'_n): (X]_"Xm) Superspaces are a SJbCIaSS Of B_
spaces, the latter being objectsin a category whose morphisms are Lg operators defined as follows:

Let Vand V' be B —modules, then a B —linear operator from V - V' is a continuous linear
operator TOL(V,V') suchthat T(av) = aT(v),ad B, vOV.
The set of B —linear operatorsfrom V — V' isdeonoted by Lg(V,V'). Let usnow recall the

definition of a G — supermanifold [6]. Suppose Sisa superspaceand Eisa C* — manifold modelled
on S (Heuristicaly, this means that E is obtained by taking the union of patches of S subject to the

operation of an equivalence relation between the patches). (&) A G” —atlas on E isa C” —atlas
{U,.ws)laON on E such that Y a =l//ﬁlﬂ;1 is G from wa(UamUﬁ) to wﬁ(U amU,B),
(b) A G” —structure on E isamaxima G* —atlason E. (c) A G® —supermanifold E is a Banach

C® - manifold endowed witha G® —structure. A free G* — supermanifold is such that Sis free.
Let us also note what is meant by an open subset U [1 S of a superspace being G-connected

[5]. Wefirst note that the r-saturation of Uis U = r_l(r (U )) Then U is said to be G-connected (G-
convex) if, for al (x,8)0U {(X,8)} n U is connected (convex), note the tilde on (x,8). The last

important definition which we wish to recall is that of a © — supermanifold [6]. Suppose Eisa C* -
manifold modelled on a superspace S™", E, a C® — manifold modelled on R™ and p a G* —map
from E -~ E,. A p-atlas on the triple (E,Ep,p) is a pair comprising a C* —atlas
{(Ua,(//a)} onE and a C” —atlas {(Upm‘/’pa)} on E, such that (i) ¢4 (Ua) is cG-connected
(that is, both G-connected and connected), (i) U, = p_l(U pa) and (iii) Y qp Lo =1 W5 (Wherer is
the body map on S™"). A G* - p—structure on the triple (E, Ep,p) is a maximal p — atlas,

whilea p —supermanifold isatriple (E, Ep,p) witha G® - p —structure on the triple.

2.0  Supervector bundles and the Clifford bundle

The purpose of this article is to identify he body of the supervector bundles T(E) and T(E)
with the tangent bundle TM in the case m = n = 4, and proceed to congruct a Clifford bundle of
algebras on the said body. In their exposition of the agebraic and Dirac-Hestenes spinor fields, Mosna
and Rogrigues Jr. [7] defined the Clifford bundles CI(M,g) in two ways. In one of these, with (M,g)
being a Lorentzian manifold, the corresponding Clifford bundle is defined as a digoint union for all
xOM of the Clifford algebras CI(T, M, gy ), that i,
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CI(M,g): UCl(TxM’gx)

where g JsecT 20\ isthe Lorentzian metric of signature (1,3), (with sec denoting section), gy is the
resrictionof gtoxand T 20M isthe 2-covariant tensor bundle. It was also shown that to each Dirac-

Hestenes spinor field ¢ L secCl ' aDinfS(M) and to each spin frame = DseCPSpine (M) there exists
13

awell-defined ¢/= OsecCl(M, g). We may note that the vector bundle Cll$if3(m) is the left redl

spin Clifford bundle of M and ¢/= awell-defined sum of even multivector fields.
Let T be a functor from the category of o —supermanifolds into the category of

supervector bundles. If E is a p —supermanifolds, then the G* — sections of the supervector

bundles T(E) and 'IT(E) are applicable to super-symmetry. In the approach to superfiber bundles

expatiated upon by Hoyos et al [4], [5] and [6], Clifford algebras do not feature. Rather, a supervector
bundle, for example, is constructed on a base which isa p —supermanifold. In fact, a supervector

bundle or an Lg —bundle, having E a p —supermanifold as a base, and fiber a B-space F, is
denoted by M (E,F,M) and is such that there exists a trivializing covering {(U;,7; )} for M
such that the mapping (x, 9) - thetransition functions, a vector bundle morphism,

i (x8)=1;(x,8)r (x,6):U; nU; - c-Lg(F)°
are G°°Di,j. Here now 1 denotes the canonica projection: 1 :M — E. Also, for agiven body c of
F, the subspace ¢ - Lg(F) ={T OLg(F)|c(Tu) = 00c(u) =0}. We also note that since 7; is a
trivializing map, 7; :I'I_l(Ui) - U xF.
The first two superbundles of interest are the two supertangent bundles T(E) with fiber being the
superspace smny, T(E) which is  modelled  after  the fiber

S ={Zin:£na,-q OV |gfkj =0m+1<i<m+ n}. Let us note that if M — E is a supervector
bundle and the functor M — L(M) comprises continuous linear forms, then L(M) is called the dua
bundle. In particular, if M = T(E) is the tangent bundle, then the dual bundle T*(E) is the cotangent
bundle. It is the third of the three superbundles considered in [6] and its fiber is S* = LB(S, B). (In
connection with the terminology supervector bundles for these superbundles having the quotient Banach
space F :V(n, 0') :V(n)/V(J) as a fiber, let us note that a Banach space is a topological vector
space[9]).

Suppose f:E; - E, is a vector bundle morphism where E; (i ::LZ) ae p-
supermanifolds, then we can define the following:

Tf :TE; - TE;,. Itisusua to denote Tf by f.. With the transition function ¢;; being

an example of a vector bundle morphism, it is clear that, with {(Ui Wi )} being the p — atlas of
E, the transition function for the tangent bundles T(E) and 'IT(E) are Y o Let us now note that

asection X of a supervector bundle is the mapping:
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X:E - M.
Let us also recal that if E isa o — supermanifold, then a differential form of degree r or simply an r-

form is a section of L}, (T(E)) where the functor L, comprises r-multilinear continuous alternating

forms. These r-forms are denoted by Q' (E) The spaces of G* — sections of T(E), 'T(E), and T*(E)
constitute respectively the spaces of supervector fields )((E),)_((E), and 1-superforms Q(E).

Asnoted in Ref [6], if M is a supervector bundle while F. isthe body of its fiber F, then there
exists an associated real vector bundle M. with base E 0 and fiber F. such that the transition functions

are ( C)ij' Here tER|V(,T):V(77) - F¢ or dternatively c:F - F. where c is a k-body map of
F :V(IT, 0') with k beingdimF.. Thebody r =t[R for T(E) and 'T(E) wheret is the projection on
the first m( = 4) coordinates is the usual tangent bundle 'F(E p). Hence, if the spacetime part of the

superspace coordinate (x, 0), where {Ha}, a=1---,4 arethe Grassmann valued coordinates, is chosen
to be a Lorentzian manifold, we can identify this T (E p) with the tangent bundle TM.

Let M be a Lorentzian manifold and (U ,¢) achart at Xx[1M. Let v be avector in the vector
space in which #(U) lies. We say that the triples (U,#,v) and (V,¢,w) are equivalent if the

derivative of (//¢_1 at ¢(x) maps Vv into w. An equivalent class of such triplesis called a tangent vector

of M at x. The set of such tangent vectors is called the tangent space of M at X, and is dented by T,M.
The tangent bundle TM isthen the digoint union

™ = [JTM.
xOM
On the other hand, let CI(T,M, gy ) be the Clifford algebra associated with (TyM, gy ). Itis
to be emphasized that T(E ) hes now been identified with TM for m= n = 4. Once this identification

has been made we can now proceed to construct the Clifford bundle of agebras on the tangent space
TX(Ep) where XJE,. The first step, therefore, in defining Cl (TXEp,gx) is first to give the

definition of the exterior algebra of TXEp, that is,

n .
ATKE 5= > NTLE,, where
i=0
N TE p isthe space of i —parts of the multivectors X AT, E p [11]. After defining both the grade
evolution and the reversion operator on this exterior algebra, the algebra of multivectors is defined

followed by the definitions of the exterior product, the contracted products, and the Clifford product.
The desired Clifford algebra is the unital associative algebra which is the vector space of multivectors

over TyE , and which is endowed with the Clifford product.
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