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Abstract
This article considers a two dimensional slow flow of a highly viscous liguid in an
open rectangular container, driven by the container’s base which moves along its
direction at a constant speed. Using perturbation technique, the first deviation from the
associated hydrostatic solution for a right angled contact angle is obtained and presented.
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1.0 Introduction

A two dimensional, slow flow of a highly viscous liquid in an open rectangular container is considered.
The liquid is driven by the container’s base which moves steadily along its plane with no liquid slipping out of
the lower corners of the container. The upper part of the liquid is exposed to the atmosphere and is being
controlled by the force of gravity and surface tension. Consequently this part of the boundary (i.e the part of the
fluid exposed to the atmosphere) is a free surface whose shape has to be determined as part of the solution to the
problem. (see the diagram below).
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Figure 1: Flow in an open container

The historical background to this problem can be found in [1]. Numerical computation for the solution to the
problem was considered for instance in [2]. An analytic approach ,through perturbation technique, was
considered in [3] to obtain an approximate solution to the problem for the case when the capillary number is
small and the velocity distribution of the container’s base (which drives the fluid) is such that it causes no
singularity in the flow. This paper relaxes the later restriction by considering the case when the container’s base
moves with a constant speed, U, along: its direction. In this case there are singularities in the flow at the two
lower corners of the container’s base that have to be considered. The method of subtracting a function that has
the same order of magnitude of singularity from the solution is used: Local solution at these comners that possess
the same magnitude are found and subtracted from the solution, leaving a well behaved function for the solution.
The contact angle, 8, is assumed to be zero. The contact angle in this case is taken to be the angle between the
free surface and the horizontal at the point the free surface attaches itself to the vertical wall. The horizontal axis
(i.e x-axis) is assumed to be along the base of the container while the y-axis is taken to be mid-way between the
two vertical walls of the container. Like in [3], the flow functions ( stream, pressure and free surface functions )
are expanded in powers of the capillary number and the first two terms of the expansion obtained for these
functions so that for a flow with a very small capillary number , these can be considered as an approximate
solution to the problem,
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2.0 Governing Equations

In dimensionless variables, with #, v denoting the horizontal and vertical components of the velocity, y
and p denoting the stream function and pressure respectively and h(x) denoting the height of the free surface
fromr the x-axis at point x, the equation governing the flow is the biharmonic equation

Vhy =0 @1

2 82 a2 oy oy y : i
where V< = R E L together with the following boundary conditions, (see [2],[3] for
e oy %

instance for detail ) Boundary conditions at fixed boundaries (x=% '3, y=0 )
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Boundary conditions at the free surface y=h(x)
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Volume constraint : lha’.rc =vol 2.7
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Contact angle constraint
ah NS B9 :
dx_o’ at x= 33 (2.8)
vol Hu gaz
vol=—, ca="—, B=p
a2 ¥ ¥
The pressure distribution is obtained from the equations
op_oviy  op_ av2y 29
Ay 1 0 SANETS R N D
Expansion

Here we assume that the functions h, y, p(xy) can be expanded in the powers of the capillary
number, ca, ( for ca<<1) as follows '

h(x)= hq +cal (x)+ ca2h2 ()4 : (2.10)
w(x,y)=wole )+ cavilx, )+ ea’v2ln y)+-

p= ‘Z—;’+ p1(x, y)4 capa (x, y)+--
ho=vol,  poBho
First Approximation "
Inserting the expansion above in equation (2.1) to (2.9) and equating the coefficient of ca” we have
Viyo =0 (2.11)
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ox Pt ay ox )
whereas matching the coefficient of ca in equations (2.6), (2.7) and (2.8) gives
2 2
fi%-shlzpl-za o @.17)
dx OxQy
1
[imw=o (2.18)
ok 1
et SO =+— .
= at x=+ 2.19)

Solution
The solution to the equations (2.11) to (2.19) above possesses singularities at thc two lower
corner points and for this reason the solution is expressed in the form

Wo=90+Pp +¥p (2.20)

where @g and @g are local solution at the corners and are each obtained as follows. A solution local to the
corner point A, (- % ,0) of the container is obtained from the biharmonic equation in polar form together with the

boundary conditions along the vertical and the horizonal boundaries containing the point:

2
wio | & bE b ton sy
L=l o rar 2007

to be

o= 2 5 (1(8-%)sin6+9c058)
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where r is the radial distance measured from the corner point A taken as the origin. This local solution possesses
the required singularity in the biharmonic equation at the corner. Transforming this local solution into the
Cartesian coordinates and shifting the origin from the corner point to the mid-point of the base of the container,
the-local solution transforms into

1 X
. [ ¥ ] o 2y
= 75+ Xx+5[tan Ty
L =2 2 2 ol 4
4 | )

Using the same procedure the local solution at the other corner point (% , 0) is obtained as

1

s 25 1 Sl e g
@ = 2<[7z2+x2]tan %

Now substituting expression for y, (in 2.20) into the equation (2.11) to (2.15) above the following equations
results

Vip=0

ol-1.y)=70) ol.y)=£0) #x0)=0,

op i, BE_ ¢ , 99 Oy
— = at x=—=, ——= at x=4, —=0 at y=0, —=G(x) at y=~h
o gl(J") 2 o gz(_)’) 3 2y ¥ P () Y=
d%p 8p
—x%e-—z-—-S(X) at y=h0
3 i 1
where fi= 4I2 ﬂn%——l]tan"yi—nz {{«}, 5 :—iﬁ—{[ﬂ%ﬂltan" yr %}
1% o
Lz Z-1 Lo r+1
2= 421( 2 2)yﬁm—ly ; o : ( 2 . Fon Ty
' 1—{,-[ 1+y -z | 1+y

S{x):_%[hé “(x+%)2:|[1r(x+;)—2h0]_ i[hg '("_%)Z}[ﬂ'(x"%).—?ho]
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These equations has the solution

-

e=¢+@) 2.21)

where
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@ —-\} ﬂé sinha xw?uank((%—) sha,, x)H’) (cosha x —2xcoth (—zf )smhanx}i]sinany

n

2
: Sl LT N .
¥ \:E{sinh Ay~ ;ly—tan A, hy cosh 2, + %{)—ﬂﬁ sinh[4,, (y - &)] J + 22 ysinh[4,(y o )]jsm Ax Jf
0

22)
with
L .
i 2 ) ; sinh —2{1 j 0 )
Ay =2m, Oy = rr%—, s, =4 LS” sin A, xdx, by = Folet, + sinh 3 E (g1 (v)- gz(y))sm o, ydy (2.23)
and
- Z{H \: ( Gp tanh L 1)smhozn + xcosha,,]+ {cn[— 21;(; an coth%"l + l)coshanxﬂ
+ xsinha, x }smany+{m[ysmh( Anhg )coshi,, (y- hg) hgsmh/?.ny] (2.24)
+ {m [A (y hO)Slnh A nY — Coth( nhﬁ )Slnh lny]}cos Anx]}
where
1 ap cosh—= 0
ty = 4EG(}C)SH} Anxdx, WE’ (fz(y)—f] (y))sm a,,yafv 7(225)
The boundary conditions on @, and @ are chosen to satisfy the following
@ @
@(-112,y) 0 L) S
o172, y) 0 f0) S0
Op/d at x = -2 g1 0 giy)
O/ at x ="z g:y) 0 g:(y)
Ap/katy = hy 0 G(x) G(x)
dpléaty=h, 0 0 0
5 @/ - pldaty =hy 0 0 0

The unknown constants A,, E, in ¢, are determined from the system of linear equations

Y Andmn *+ Enmem = Rm: Amam + ) Enemn = Rm (2.26)
n n
where
holapn-sinhay)
= n = nl! (2.27a)
h —
2cos 5
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1
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= anan[h(ﬂm,an,é-)]— 2(c0th%a,,)l5(ftm,an,%)]+ Sy sinh A, Ay
R
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B =13, i) hanblil)eosla, ) oafpfsinls (7= o) i, s
(2.27¢)

= 1 et ) s o, ) ot 2o
—sinb{2 s 2]

R, :M _%Z(_ 1)” -3 f] [(ysinl{in(y —hy )D]sinam ydy+ .EU & (y)SiﬂOfnJ’dy
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2sinh22
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_ bolensiniey A (1), [c0sHA o s (@ A o)~ sinH{ g ) (s s o) + [* &a(y)sincs, ey

Zsinh%"l 2 4
(2.27)

|
| where I, to [, are as defined in the appendix. Taking n terms of the summation, the system of linear equations
| in equation (2.26) can be written in terms of matrix as

\

A DuYz|_(& 2.28)
Dy E N5 & '

xI:(AerZa"'sAn)T, .Ez:(El’Ezf"sEny
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where
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and Dy, and D, are n x n diagonal matrices with entries e,-,', a;; respectively on row 7 column i To economize
on the storage, this linear system of equations in equation (2.28), may be written equivalently as two systems of

linear equations namely
(-ADy'E+Dy)%=b-ADx "' by %1 =-Dy’'(b1 - Ex))

The unknown constants Cm’, H," in @, (see equation. 2.24) are determined from the linear systems

SH, Tam *+ Con Vi = Zm, H, um + XCq Kom = Wm (2.29)
n n
where
y = lamsintan) 7 2%_ oy j
i Mmsinh?zm g Sinl2in/g

tun =iy [ [ysint(a, ) coshi, (y—y) -y sinhsinct ey
. L Isint{(A, i NcosHA Ao ) (G s o)~ SirtHby s @ms s o )} = P T2 s 2 00 )]

2= ")+ 0ty 3 o, 15 )~ ( s o) Ot Nt )

n

- =_(”;li ay COth‘%aﬂ & I)II(;[m’an";lE)"' anIS(ﬂm’am%)

W, :m{%ﬁho +cothd, by ';[dn{_(% @y tan% a'_n + 1)4(%’(41’%)"'“" lﬁ(&n;am%)}]

This linear system of equations in equation (2.29), has the same structures as in equation (2.28), where in this
case,

ML o s=letesivesf

Q‘ =(Zl,z2,"‘,zn)T, éz =(wlaw2;"'1wn)T
0 b R e kyy k2 kg
Il IR T im km kn2- knn

(Taking n terms of the summation involved) and Dy, and Dy, are n x n diagonal matrices with entries v,, ¥,
respectively on row i column i. The system-can therefore be solved in the way mentioned above. The pressure

at the interface is given by p; (x, ho) = pi’ (X, ho) + ¢, where
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Pon . [P belp2 :
JACRNE ja—@}—mdx— jia%dy: ]_142 (xé)z-ig + 2)2 ¢ +2Z( j (— 24, tanh% a, +d, )coshanx

2a,, (— 2b, coth% a, + C: }inhanx] ;A” sinhA, A, cosl,x + {%1“’# +2,4, tanh&nho}smﬂwx}
0
The second approximation 4, of the interface is obtained from

dzhl % 62!}/0 '% : s % .
;x—z-—Bh] =-p (x,h0)~2w—c at y=h,, as Py (x)=JcoshBZx+ K sinh B JlT(s)smB(x—s)ds-
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+ ISn cosinx+ 16n sin Anx]% _

where T(x)=—1 [H_)*lm':’] 2[ "”0] Xty ]”0[2”0 ("* )”] x‘"}"o[z"o( %H
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L

n
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H : . 4
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The contact angle conditions 4’(%2)=0 fix the constants J and K:

1

f T(s)cosh B% (— = s)ds 22 [Iz,,a cosh> e

1
1 172
K =|2B2 cosh—é—B2

+I4n[ a,sinhla, —3:;B°°Shl j+16n,1,,cosh-5—/l,,]

n
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1 |

1 awd B2 2 . 8 ,
J= |i232 sinh1 B2 } - fl T(s)cosshB2 (%— s)ds]+ ZZ[II,,an sinh1a, + 13"(—;—0:,, coshle,
j 5 n

2
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n sl e |
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The volume constraint condition (i.e. equation (2.18)) determines the constant ¢ in /,(x) as

1 1.2 .
¢=2KB? sinh %{—'Bz .E fl T(s)sin B(x —s)dsdxv 232[11,,0:;' sinh%u_r,l
2 n :

2
3o - B
+13, %aglcosh%a ———'—’—-——-—-sinhlan —Is,,A;lsin%i“

n 207 2
a, {an —B]

3.0 Conclusion
An approximate solution valid for small capillary number is obtained, through perturbation technique,
for the flow of an incompressible fluid in an open container generated by the container’s base that moves
steadily with a constant speed. This is achieved by expanding the flow quantities, such as the stream. pressure
and the free surface functions, in terms of capillary number. Consequently for small capillary number, the
leading terms of the expansion provides a reasonable approximation to the exact solution to the problem, for the
case when the free surface (the upper boundary of the fluid) meets the vertical walls of the container at a right
v angle. However because the expressions above including the systems of linear equations contains exponential
functions using many terms of the summations in those expressions and equations is the preblem with the
above procedure.
Appendix

L(p.q.8)= ﬁcos(px)cosh(qx)dx =£ silpble q2c OS(;b) tanh{g) cosh(gb)
p-+q

L(p.q,6)= Esin(px)sinh(qx)dt = “gseia b)t;n(qa;)-q git(eb) cosh(gb)
; P tq

I3(p.q,a,b)= ﬁsin(px)cdsh(qx)dx _ Zpcos(pb)-gsin(pb)tan(gb) cosh(gb)+ P
P2+q2 Po+q

L(p.q,a,6)= Ecos(px)sinh(qx)dx =2 sinp b)tan;h(q;)-q sy b)cosh(qb)-i- 2q 5
P +gq p+q

2.8
Isi(p,g.b)= in(px)sinh(gx)dx = cosh(qb)l_{qb_ i tanh(qb)}sin(pb)
g Exsm px 2.7 7

+{- pblanh(qb)+ 2pq cos(pb) SRR
p?+q2 [ 2,29
P tq J

2.3
l(p.g.6)= [(ecos(pr)eosh(gr)de = 5] {qbwmh(qb)- s g]cos(pa)
P54 P +q

o 5
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+{— pb+ p;i

. cosh(gb)

2
g 5 tanh(pb)} sin(pb)} = 43—%‘1—7
q (pz +q2}

40

Py

; 22
Li{p,q,b)= ﬁx sin(px)cosh(qx)dx = 42——2—\»{@!} tanh(gb)— p’Z —q2 }sin(pb)

pTtyq

+{-pb+ —22% tanh(qb)} cos( pb)}

L
¥ cosh(qb)';‘_ ;

p-tq

i
IB(P> q,b) = _Excos(px)sinh(qx)dx o gb - p2 _‘?2
ptgq L Dy

tan(qb)} cos(pb) -

+ |~ pbtanh(gb)+ — L tanh(gb)

q

Iy(p,q,a,b)= f:.x sin(gx )dx :|:—3— - —%tan(qb)il cos

Lio (Ps 9, b) = ﬁx cosh(qx)dx {% témh(qb) = %:' cosh(qb)+ ,_1_)_

q
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