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Abstract.
By considering the prolonged action of the group of symmetries G on the set of

states H of a quantum system, we obtain a generalized rotation of state vectors in
complex Hilbert spaces for which norms are preserved. New symmetries as well as new
representations are thus obtained, which for complex quantum systems aid in the
simplification of the system. The structure and properties of this new algebra are
extensible studied.

ppl-10

1.0 Introduction

Since the pioneering work of Sophus Lie on the application of continuous group of transformations to
the study of systems of partial differential equations, much work has been undertaken in the globalization,
abstraction and fashionability of the Lie groups without much reference to their usefulness in obtaining solutions
to differential equations which was the original reason why the theory was developed in the first place. A major
reason for this is that early researchers found Lie’s method of limited application in the construction of the
general solution to a large number of partial differential equations occurring then. Following Noether’s theorem
[1], proving the one-to-one correspondence between symmetry groups of variational problems and conservation
Jaws of their associated Euler-Lagrange equations and the work by L.V Ovsiannikov [2], new interest in the
usefulness of applying Lie groups to differential equations was rekindled, which was further spurred on by
interactions with soliton equations and Hamiltonian systems. This led P. J Olver into developing an improved
modern version of Lie’s transformation theory [3], following the work by G. Birkhoff’s on hydrodynamics [4].
Olver’s method provides a ready verifiable means of obtaining the group of symmetries of any partial
differential equation, linear or non-linear. This paved the way for further work in this area [5] relating to the full
symmetry group of point transformations for Maxwell’s equations. Following E. O Ifidon and E. O Oghre [6],

we extend Olver’s theory to the study of the set of states H of a quantum system. It can be shown that
invariance of a quantum system under the prolonged action of G give rise to a 13 dimensional subgroup of
SL(6,R).

In this paper we develop the theory, which was first introduced in (6] and study in greater details the properties
of the resulting algebra.

2.0 Lie Groups, Lie Algebras and the Set of States of a Quantum System
Let S denote the set of all possible states of a system?
Definition 2.1
A group G is a symmetry group of S if for each seS and geG. g.seS whenever g.s is defined. In other
words G transforms a given state of the system to a new state of the system.
Definition 2.2
Suppose G is such that
g1.(g2.5) =(g182)-s
es=§ g1.82€G
where ¢ is the identity element in G. Then G is called a group of symmetries for S. In quantum

~

mechanics the set of states S = H is the set of all rays ¢ = {A(p. Ae C'} where @ is a nonzero vector
in the complex Hilbert space H and C is the field of complex numbers.
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Theorem 2.1 .
‘Given a ray gf'e H , if G is a Lie group of symmetries for H, then the probability of going from the state

g.¢ tothe state g.y is the same as that of going from ¢ to y forall ge Gand ¢,y € H .

Proof :

See [6]

A consequence of theorem 2.1 is that we may view our group G as acting to change the frame of
reference of our quantum system. Since acting to change the frame of reference does not change the state
vectors, we have a transformation for which norms are preserved. This ascertains that any local ~ Lie group of

symmetries acting on the set of states H preserves transition probabilities in H. Groups which preserves
transition probabilities in quantum mechanics helps to ascertain that changing the frame of reference of the state
vectors would not-affect the system we are studying. This is useful a useful concept.

Definition 2.3 i

Let H be the set of states of a quantum system. The transformation ¢ — g.¢ where g is an operation
from H — H is called a generalized rotation of the state vectors in H.
Example 2.1

Let us construct a sub-bundleZ= {x, 0):xeR™ andge H}. x may be viewed as the real line

probability measures ¢ assigns to the various self adjoint operators in H as it evolves in time. If G acts regularly
on Z, then we have for g € G close to the identity e

g4=2g(x,0)=(Agx,Ag0)=(X.5)
where (A sy ) C™ gomposition maps of G defined by
X= Ag(":‘P) = Ag.(excp)(x)
and
§ = A5 (x,9) = Ag(ex P)(X)
This transtormation is analogous to a rotation of the classical phase space S = R *x R with
gs= (gg,gg) it 8= {S’EJ
and g is a rotation of R”.

We note here that only those group elements in the neighbourhood of the identity can in general be
guaranteed to transform functions. Thus our theory is developed for only local transformation groups. Non-local
symmetries have been studied recently by Muriel and Romero [7] but their procedure works for only non-
abelian Lie algébras and if considered may not be guaranteed to preserve the physical observables of our

quantum system, ' We may imagine all sorts of groups acting on the sets of states of our quantum system, but
this will only be a useful concept if the symmetries preserve the observations. We now construct an appropriate

space for which our group of symmetries may act. In doing this, let us first consider the manifold Z = R™xH,

which is homomorphic to H, where X € R" are the components of @, (physically the x are seal line projection

valued measures associated with the self adjoint operators of the system.). Any element of Z completely
determines a particular pure state of the quantum system. The p-sections of Z would be determined by the
dynamics of the system. Note that most systems of interest have their dynamics described by a differential
equation, which in the case of quantum mechanics is the Schrodinger equation. Thus the path is of the form

;?’51 where @, satisfies

el
h—L = H,
; ot I

Here H is a self adjoint operator called the total energy or Hamiltonian of the system. The p- sections
of Z would then be given by the set

{(x,;zﬁ,):ih%:f{gﬁr}.
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The time dependence of our system may be variously viewed as a change in state vectors whose properties are
imbedded in Z, < Z . Usually having defined our Hilbert space H, the energy operator H and identifying the

¥a various self adjoint operators on H with physical observables, the problem is to find these data for given
physical systems, solve the dynamics and to identify various physical observables with operators. With the help
of group theory, these properties may be studied in Z and sometimes a group can be very obviously involved, for
instance a rotation group if the system has spherical symmetries. Also unitary groups acting on Z create a
rotation of axes without necessarily changing the state vectors. In this paper we are interested in finding more
general transformations than unitary transformations in which both a change in the axes and in the state vectors

may occur. To this end we shall construct an appropriate fibre bundle (H(k),n,z p) where 7T are the canonical

bundle projections and H ™ is the extended space of p-sections Z,of Z called the extended k-jet bundle and
it contains all the partial derivatives of @, of order <k . Due to the coordinate structure of H™ no distinctions

can be made between the state vectors and their dynamical variables in H® | The dynamics of the system

would then be described by a closed subvariety A, of H® _ We anticipate that “hidden” symmetries would be

obtained if one considers the prolonged action of the symmetry group G on H® . This can be achieved as

follows. If G is a local group of symmetries acting on Z, there is induced on H™ an action of G, which is due
to the action of G on p-sections of Z called the k-th prolongation of G. If G acts regularly on Z in the sense of

Palais [8] so that one has a natural manifold structure on the quotient space Z / G then under certain conditions
G transforms elements of A, into other elements of A, i.e Agis G-invariant. If A, is invariant under the
prolonged action of G, then the problem of solving the system in Z in a particular representation is in one to one

correspondence with the problem of solving the system in a different representation in H™ with fewer
5 components dependir.g on the dimensions of the orbit of G. The important point is that the dynamical variables
are reduced by an amount / where / is the dimensions of the orbit of G, making the reduced system in some
sense easier to solve. New conservation laws can be obtained by checking which of the vector fields are
constants of motion i.e commutes with H.

2.0 Infinitesimal Generéiors of the Lie Algebra.
We shall assume that our quantum system consist of a single spineless particle moving in a
conservative force field potential v = v(x,y,=) so that the Hilbert space 18 Ei= L2 (R3‘r]) 1. Lesbeque measure

A state vector ¢ would be represented by a wave function ‘¥(x.y.z:t) defined on R* x R satisfying

CaiEP (3.0)
i ot
with
2
H=- +v
i "-{:ﬂ"ﬁ.. 2

~Sm-
i where V7 denotes the Laplacian.
Given a local transformation group G acting on NxM the space of the independent and the dependent variables
‘ (x,u), there is induced an action of G on the space NxM* consisting of points (x,u
:

™) where u™ represents the
derivatives of the dependent variables of order <k given by
- B‘Jlu
cJju=—; -
('.:Ju ”__E']P
X, X,
| @ OSl.lISk [.l|=jl+j2+.,.,+jp
} See [9]. This induced action of G, called the k-rh prolongation of G, can easily be obtained from the
%
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corresponding prolonged infinitesimal generators Pr(k)x of the group which are vector fields on NxM™ and
have a relatively simple expression. The generators ¥ of the group are vector fields on NxM given by
p q
i d d
= X,U)—+ X, u)—
x ;g oo ]ZI:‘PI( =
= =

where p and g represents the number of independent variable in the space NxM respectively. The corresponding
expression for the prolonged vector field is then

q
(k) J (k) 0
P - -
r X X+ZZ(P1 (X,U )au]
=11 i
with
P p
J / /
¢ =07\ ¢' - ulgi+ Yl &
i=1 i=1
Dy = Dby .D.DY
where

i a d | 4
D]: i+ZZUJ
i=1

. .
ax duy
is the total derivative operator. The infinitesimal criteria for invariance of a system of partial differential

equations A(x,u™) = 0 under the action of G states that G is a symmetry group of the system A(x,u™) = 0 if and
only if for every infinitesimal generators y of G.

Pr(k)xA(x, u®) )=0 G.1)
whenever A(x,u™) = 0 for the case of the Schrodinger equation
Axu®y =@, +i-v2 Ly (3.2)

A typical vector field on R*xR? with coordinates (x,y,z,t,v,¥) is given by
% =8E0x +ndy +A0z +y0t + Oy + @Oy 3.3)
where the coefficients {‘f,?y, A,7,0, (D} are arbitrary functions of x, y, x, v and V. The corresponding second

prolongation of y is
p§2)1=x+26~'awj +> Aoy (3.4)
J J

where the J-sum is over all partitions .

(1,0,0,0)(0,1,0,0) (0,0,1,0)(0,0,0,1)(1,1,0,0)(1,0.1,0)

J =4(1,0,0,1)(0,11,0),(0,1,0,1)(0,0,1,1)(2,0,0,0) (0,2.0.0)

(0,0,2,0)(0,0,0,2)

Substitution of (3.3) and (3.4) in (3.1) yields

0(0.0,0,1) , §(2.0,0,0) | (0.2,0,0) , 5(0.03,0) _ 1y _wpr =g (

1~
Ln

subject to

,-.
S
[}

My W gy + W F W~V
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where

0001 _ | Pt ISy = oA+ ¥ g - 1)
B LPI qjx‘f\i" - ‘Pr‘PquJ - li"t"Pz)uLp '—thj/\{;

Dyx —¥x Cyxy “gxx)"‘}’ynxx ~Wzhxx —¥ivxx
+Wyx (Py - 26x) = 2%¥xxMx — 2¥xzhx —2¥ ¥4
j .
+ Vi (Ppy — 289y ) - 2¥y Fynpx +2vy @y + 2¥ Ve By ~ &)
2¥yvx(@vy —Evx) + 2V Y Ay - 294 Wiy
= 2liqu“z’?'x‘l’ e 2llePt7‘Px
= 2"’xlyynxv 2%,V hyy =2vx ¥t ¥xy =3¥¥xby
2,0,0,0
o ) = ‘Pxxlpyﬂ‘{' —Pxx ¥ hy + PaxPeyy —2¥yx VxSy
2%y Wyymy - 2lpxqsz_k‘{‘ vy — 2%y Yyevy
3 - 2 2
—ViSyy —llePyTi‘P‘P ~Px¥Apy
2 2
~xVerwe —2¥5 vy &y _zvxqjxkpynv‘{’
2
~ P oy dpy - v ¥y Wy +vi @y,
2 2 2
i S AT Yy —vi¥ i + Vi Py
~Fevandy — Vi \P_v’? v~ Povgdy —vi Wy,

Pyy = ¥xSyy +¥yQOyy —nyy) =¥ dyy - Fevyy

: 2
72‘1}‘}(‘{‘}.@{1), +¥y (Dyy ﬁ2nq1y)—2‘Py‘PZlq1y
—2¥¥yryy = 2¥yyéy +Wyy (Oy —2ny)-2¥5 )y
= 2¥qyyy +2vy Dy =2y vylyy 2y vy ( Dy - Nvy)

2 2
—2¥vyhyy = 2¥pvyvyy 2 Yy lyy - Yinyy
0,2,0,0 2 2 e 3
60200 __y2y yyy STy S 2P W By -3 Wy
3
—2¥yWyyhy “2¥yYiyvy = 2¥xYyvy&uyp —2vyYydy,
—ZW’Y‘PZvylqu w2‘I‘y‘i’tvyyq,1v —Z‘Px}.vyév —‘{’x‘{‘yyétp
—Wyy¥oly — ¥y Yivy = 2¥yyvyny —2¥xyvydy - VyPiy Yy
2 2y 3 T 2. 2
FViDyy vy “vyPynyy =¥V ~VYivyyey - Fzvyyhy

_‘Pl‘”yy‘!v
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@y — Wbz —Vylz +¥ 20y, =Azz) =YtV zz
2
-2¥) ¥y, + ¥z Gy -2y —-2Ay;)-2¥; Y11y,
—2Wyy &y —2¥ )z + W (PF —247)-2¥ 572
+2v, Oy —2v ¥ xEyz —2vz¥ynvz + 2¥7vz(Pvy —Avz)

2 2
—2vz¥tyvz — Yz ¥x 8w - ¥Z¥ynyy ~¥ihpy —F2¥ vy

‘Z\yzl}'x_zg‘{‘ 2% ¥yzny —3¥, ¥ by - 2¥ Y 1y
—2v ¥ ¥ xSy —2¥ v Yynvy -2vz¥xzEv —2¥Zz¥ynvy
=2vz¥xz8v —2vz¥yzly ¥ Pxly - VY yny -V ¥evy

5(0002) _

2
=2vg¥Wazhy — v ¥ayy +VZQyy - V%q"xﬁw 3 V%q’y‘]vv

- V%‘levv = V%‘Pt“!vv +Vzz @y —Vzz¥xEv —vzz¥yny
= Vzz¥zhy —Vzz Ttvy
from (3.5) and (3.6) the coefficient functions {{ A0, (D} satisfy the symmetry equations
20, ~ 4. ~6 . 25 +ivyvyl, —&y)—1§, =0
20y - 11xx ~ Ny ~Nzz +IVEVEy —y) - ing =0
20,y — Ay —hyy —hgz +ivVEVEz - Ap)—ing =0
rt —28x —ilyxx +Vyy +Yzz)— VPV =0
yt —2ny —ilrxx +Vyy +Vzz) — VPV =0
rt —2hy —i(yxx +Vyy +¥zz) ~IVEVF¥=0

T'!x_{}y =0
A —E,=0

T]W :r"v:lw:/‘lv:éw :‘EDV:Y\II:YV:YX .—_’Yy:‘yzzo
@\f'}‘ivqj\'v:o

(3.7a)
(3.7b)
(3.7¢)
(3.7d)
Bi7e)
(3.7E
(3.7g)
(3.7h)
(3.77)
(.71
(3.7k)

By + Dyy + Pz — VO~ YO +iVFVEx +Vyy +772) +1Py +VF(Dy —yp)+ V¥ yg =0

the most general solutions to the set of equations (3.7) are given by

~ e tte +eo,t
5—5(01 +n,2)x—cloz—c“y cyttcy

-

1
r]:E(c1t+cz)y—clzz—c“y+c-:6t+c7

ﬂv*] t = t
75(01 +c2)z ClgZ—CpYtegt+ey

-
y=ct” +cyttey

1(1 2o 2
CD:E(ZC](X2+Y +Z )+c4x+c6y+cgz+coj‘}’

;f>:(c}t+c:2)\/+i—ic:1

(3.8)

where s are arbitrary regl constants. Thus the maximal invariant infinitesimal algebra is spanned by the thirteen

vector fields
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X1 :ax
Xy =0,
X3 =0z
X4 =04

X 5 =X0x +y0y +207 +2t0¢ -2vdy
¥ =-2Z0y + X0y

X7 =—y0x +X0y o~
Xy = —20y + Y0y
i
2’9 =t6x +EX‘P5V
i
Yoo =t0y +—y¥o (3.9)
10 =€y T YHOy
i
Xy =10z +E‘P6\p
2. vl ( 3 -3 2},, 3. ]
=X, +1y0y, + 120, +t°0, +—\x“ +y“ +2° WOy +| =i-2tv |0
12 z TD0y i 73 ¥ A 2 v
i
113 = Elya‘-l-' e
The generators (3.9) satisfy the Lie commutation relations
[L.L]=2 [Lv]=v [rv]=P [.P]=P [rs.v]=V
les.2|=7 {%,T}T s l=rn [PV]=245 7712125
2.2 =7
with other commutation relations vanishing. Here
i
Lj :(rx v)j zéjik x Ok
Vj = tVJ -i-%qu"aty
Pf ¥ VJ
T==0
Therefore the vector field y; =1,...13 are closed under commutation and form a 13 dimensional Lie algebra.

The multiplication table for this algebra is
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Z1 ¥4 A3 X4 Xs As V4] YA Ao X Xu In A
Zi o 0 0 0 X Zs X2 i3 0 0 0 Xs o
A2 o 0 0 0 V4 0 =305 b A3 X3 o 1
Bilm e pl g TR TNSETNEE, ¥ ¥ el
Zs |o 0 0 0 2% 4 0 0 4 0 X2 X X
Ll =%y 15 2y § d X3 i o Xu 2Xn
Ko | =43 o VAR 0 0 Ao SRl e N VAT 0
P ougl S R o i 3 s n AT A3 ¢ 0 0
Xs | 213 0 0 - S At s wallirovn g 0 0 g 0
Xo |o k' 0 A X 0 —Xu X o 0
Yo | o =Lt =¥y = 0 X5 " g A 0 0 0 0
o s« S e Y e, O ] : e
B V=0 s 2y 0 0 0 0 T 0
Az | o 0 0 0 0 0 0 0 0 0 ol 0

The results above show that the maximal invariant symmetry algebra is projectable, non-abelian and non -

solvable. The regular representation R(y) of an arbitrary element y = Zai x; in the vector space of this

i=1

algebra is
'
X1 X2 X3 y As Ao X7 Az KXo Lo An A3 X2
T RE A I T
o o8 o 0 o 0
o o o 0 Dt it
a 9 10 al] 2(15 [112
- 1 _as _a3 '20-4 as ('Ilo (1“ D za\l
ol 0 -o 0 -af o a =8 o b
o -a' 0 o e a’ o’ 0.0
Gl 1160 0 i Ot ) 0 TG
o 0 0 -’ o af 0
0 -o* 0 sl T o
L0 0 - -8 TP gsE
0 0 0 0 0 0 0
-t e et 0 20’
L

Where the basis vectors are obtained from (3.10) by setting

Ve ¥ YO ]
o' =1,i=12.12 a/ =0, j#iinturn.
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The Cartan Killing metric tensor g, of this algebra is non degenerate and is given by

{0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 =3 0
0 0 0 0 14 0 0 0 0 0 -1 0 0
0 0 0 0 0 -6 0 0 0 0 0 0 0

gij = 0 0 0 0 0 0 -6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -6 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0 0 0 1 0 0
0 0 0 -7 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

From which we see that the algebra is non-compact and semi-simple. Actually this algebra is simple as can be
seen by checking the multiplication table.

4.0 The Maximal Invariant Group

In general corresponding to a given Lie algebra, there may be more than one Lie group, but of all such
Lie groups there is one and only one that is simply connected called the universal group, which in this case is
the maximal irvariant group of our system. This group is obtained using Taylor’s exponentiation technique.

Corresponding to an arbitrary element » =@ y, of the algebra is the group element g € G defined by

g =expla’ ;) =exp(ss' ;)
where the last equality holds along the straight line aj(r) =s'r, through the origin of the Lie algebra defined in
terms of the parameter 7. Thus the one-parameter subgroups of the maximal groups corresponding to each

vector field ¥, have their group actions defined by
G p 5 Xy, Z,Lv, W) = (X + Ay, Z, LV, y)
G
Gy =tx. vz v = (x vz A0 v
G, =(x, Y.z, v,y) > (X, Y, Z.t + A, V. )

4
)
G 5 =(x,y,z.t,v.y) = (elx,e’iy,e’lz,ez’tl.e “’lv,w)

=(X.y.Z.Lv.Y) = (X y + Az Lv.y)

(3]

G 6 = (%Y., v.y) —> (Xcos A -zsinAd.y.zcosA + xsind, 1, v, y)

G, =(X.y.z,L,v.y) = (x,ycos L -zsinA,zcosA + ysind,t,v.y)

i 2
_}(x+l 3]
GS =(X,Y.ZLV,¥) = | x+ ALy, z,t,v,ye-

Gy =¥.2 t,v,y) —> (xcosh - ysind.ycosA + xsind, z,t. v, y)

i (yX +)L21)
Gip=(x%y.ztLv,y) > X,y + /It,z.t,v,we2
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Laa+22y
G 11 = (st!zstav"I’) —> | XY,.Z +)bt,t,V,\|132

i) s 2.
G]2 =('x,y,z,t,v,q;)—>(e?“tx,e’?‘ty,eitz,ez’lt,e'uv,eﬂ(x g he )w)

i
G 13 i (X,y,Z,t, V’W) T (X,y,Z,t,V,ﬂz ‘V)

5.0 Some Subgroups of the Maximal Invariant Symmetry Group
Consider the infinitesimal generators P = -i()jl sXnsX3 )= —iV  with corresponding Lie group

exp(—iﬂtﬁ’) . These are the generators of infinitesimal displacements in space, which forms a continuously connected three-

parameter, non-compact Lie group, which is isomorphic to the unitary group. The fact that the components of 1_5 commute
with each other leads directly to the conclusion that the space displacement group, is abelian. Also it can be shown that
[1_5, H ] = (). That is the generators of this group commutes with the Hamiltonian of the system and arc therefore constants

of the motion. This shows that the system possesses space-displacement symmetry for which the momentum and energy aré
conserved. Thus our system may be displaced in space and still be a possible physical system characterized by a constant and
well defined value of the momentum, as well as of the energy. It is well known that a free electron possesses this symmetry,
but we have been able to show that this symmetry exists for any electron under the influence of a conservative field. The

generator, 1 =1 X 4 with corresponding Lie group exp(i?L@T) is the generator of infinitesimal time-displacement of the
system. This shows that the system possesses time-displacement symmetry or invariance. Thus the system can be displaced

in time and still be a physical system. The fact that T commutes with the Hamiltonian ‘of the system is the quantum
mechanical analog of the law of conservation of energy. Next consider the infinitesimal generators

L= i(,’t’s s X ssnkn ) =T xP with corresponding Lie group exp iX.(F x V) . These are the generators of infinitesimal
rotations. Since the generators do not commute, the group is a non abelian, continuously connected, three parameter group
that is easily seen to be compact. The group is called 0(3) , the orthogonal group in 3 dimensions. It can be shown that the
rotation group is doubly connected. Since II:, HJ: 0, we can deduce that there is energy degeneracy in the system. Also the

fact that L commutes with the Hamiltonian is the quantum mechanical analog of the law of conservation of

angularmomentum. The group G5 suggests that the system is invariant under space and time dilatations. This group is

useful as it gives a special state of the system in which an exact value for all three components of the angular momentum L
can be specitied. Other subgroups of the universal covering group can be studied.

6.0 Concluding Remarks.
The group obtained by us is actually a subgroup of the special linear group, SL(6,R) which has 35 generators.

This subgroup of SL(6,R) which has only 13 generators is not well known in the literature and cannot be readily named by

us. However, we have shown that this group is semi-simple, non- abelian , non-solvable, simple connected , projectable .
compact subgroup of the special linear group and it is a direct sum of other well-known groups of mathematical physics such
as the rotation group, the unitary group and so on for which known symmetry operations can be deduced. However, there are
other unknown or “hidden” symmeltry operations, which are consequences of the invariance of this global group from which
useful deductions can be inferred about the quantum mechanical system in general.
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