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ABSTRACT
The surface energy and surface relaxation for three low-index surfaces

of nine bee metals are calculated using the equivalent crystal theory. The results

for changes in the first interlayer spacing (A;;) and the ensuing surface energies
are discussed and then compared with other theoretical results and available
experimental data.

1. INTRODUCTION

It is now well established that metal surfaces undergo relaxation [1].
The experimental results are mainly obtained by low-energy electron diffraction
[1.2] (LEED) and ion scattering studies [3].

These experimental studies have shown that multilayer relaxation is a
rather common phenomenon and that the relaxation profile varies dramatically
from one surface to another. Moreover, for unsymmetrical surfaces (ie.,
surfaces for which there does not exist at least two mirror planes) the relaxation
would have parallel as well as perpendicular components [4,5].

Theoretically, Allan and lannoo [6] predicted a long time ago a
contraction of the first interlayer distance using a second-moment approximation
of the tight-binding Scheme. The same model was used to study monolayer
relaxations of the (100), (110), and (111) surfaces of fcc transition metals [7] ,
the (100) surface of bcc Mo and W [8] , and stepped surfaces of fcc transition
metals [9] . Similar studies for low-index surfaces of bee and fee transition
metals have also been done [10.11].

Other semi-empirical approaches like the electrostatic model of Finnis
and Heine [12], which was later improved upon by Jiang et al. [13,14] , have
also been developed for surface relaxation studies. However, the Finnis-Heine
approach requires an experimental input for its effective implementation. Other

theoretical works include the total energy calculations of Ho and Bohnen [15], .
Fu et al {16], Equiluz [17], Davenport and Weinert [18], Hamarin and Feibelman
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[19,20], and Methfessel et al [21]. A study of six lower index surfaces of Nb, Ta,
Mo, and W, has also been done by Luo and Legrand [22], using the “quenched
molecular — dynamics * approach, and it examined the face — dependent profiles
of perpendicular relaxations, from total enetgy minimizations in a tight-binding
{frame work.

In this present work, we use the “equivalent crystal theory “method to
find the top-layer relaxation of three surfaces, (110), (100), and (111), for nine
bec metals. We also calculate the relaxed surface energies for these metals.
Although the equivalent crystal theory of Smith et al [23], has been used
extensively for the calculation of surface energies and surface relaxations for
face-centered cubic metals [23,24], it has seen limited application to body —
centered cubic metals. To fill this gap, we recently reported unrelaxed surface
energies for twelve bee metals [25]. We therefore extend our previous effort by
including the effect of relaxation on the calculated surface energies of Nb, Ta,
Mo.W, Li, Na, K, Rb, and Cs. In this study, we considered only perpendicuiar
relaxation.

The summary of this paper is as follows: in section 2, we give a brief
discussion of the ECT method, and in section 3 we discuss the ECT method of
calculating the surface energies of bee metals. Results of surface energies and
the top-layer relaxation are reported in section 4, along with results obtained by
other workers. Concluding remarks are given in section 5.

2. EQUIVALENT CRYSTAL THEORY

Equivalent crystal theory [23-25] is based on an exact relationship
between the total energy and atomic locations and applies to surfaces and
defects in both simple and transition metals as well as in covalent solids. Lattice
defects and surface energies are determitied via perturbation theory on a
fictitious, equivalent single crystal whose lattice constant is chosen to minimize
the perturbation. Rose et al. [26] fourrd that the cohesive energy of metals and
covalent solids as a function of the lattice parameter could be represented by a
simple relationship:

E=AE.E*(a¥ ' (1)

Where AE is the cohesive energy and E *(a*) is a universal shape for the
* curve, which can be well represented by the Rydberg function Thus,

E*(a%)= - (1+ a¥)exp(-a*) @

and
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a’ = (rye= tyge )V 1 3)

where £, is the Wigner — Seit; radius, £, is the corresponding equilibrium

value and [ is given by
| =[AE/(d*E/da*)a=a,]"* (4)

where (g, is the equilibrium value of the lattice parameter a . The parameter [

can also be written in terms of known experimental quantities as

1= [AE /122Br,g 1" (5)

where B is the bulk modulus. The energy of the equivalent crystal as a function
of its lattice constant can therefore be given by the universal binding energy
relation (UBER) in Eq. (1).

Let’s consider a certain arbitrary defect and let € be the total energy to
form the defect or surface, then

e=Le, (©)
]

where E,, is the contribution from an atom I close to the defect or surface.

ECT is based on the concept that for each atom 7 a certain perfect, equivalent
crystal exists with its lattice parameter fixed-at a value so that the energy of

atom [ in the equivalent crystal is also €. . This equivalent crystal differs from

the actual ground — state crystal only in that its lattice constant may be different

from the-ground-state value. We compute € via perturbation theory, where the
i

perturbation arises from the difference between the ion core electronic potentials
of the actual defect solid and those of the effective bulk single crystal. The ;

problem of finding € o and hence € , is reduced to finding for each atom i an

effective equivalent single crystal and calculating the energy of the atom [ ini
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Many body terms contribute to the energy of each atom in real systems. Hence,

EJ is written as a sort of perturbation series of one-, two-, three- and four-body

terms, each of which is obtained by considering a different effective perfect

equivalent single crystal. In this approximation [23},' = takes the form:

i

¢, = AE[E (a)+ L F (@) Y F(a)(i,j.b)+ L F(@.p.9))] (7)
i ik

where
F*a*) = 1-(1+a%) exp ( -a*) (8)

The \irst term in Eq. (7), F* (a,‘(i) ), contributes when average

neighbor distances are altered via defect or surface formation. It can be thought
of as representing local atom density changes. In most cases, this ‘volume’ term

is the leading contribution to €; and in the case of isotropic volume
deformations; it give; €, to the accuracy of the UBER. The value of a; (i), the

lattice parameter of the first equivalent crystal associated-with atom i, is chosen
so that the perturbation (the difference in potentials betweenthe solid containing
the defect and its bulk, ground- state equivalent crystal) vanishes. Within the
framework of ECT, this requirement translates into the following condition

from, which @, (i) is determined:
N R exp(-aR.)+ Ny(CRY“expl-( + 1/ DGR, ]

- E R” exp(-aR;) - ZR%exp‘[—(a+1/l)Rj]=0 (9)

defeciNN— defectNNN

where

R = \}“{.-ié,.] (10)

Eq. (9) is the same as Eq. (26) of Ref. (23] and it is just the matherﬁ_atical
representation for. Jocal atom density changes in the defect region. In Eq.4(9). R;

is the distance between the atom located at position R; anda reference at;g)‘in
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located at position R ; N, and N, are, respectively the number of nearest
neighbors (NN) and next-nearest neighbors (NNN) in the equivalent crystal; and
finally, C, is the ratio between the NNN distance and the NN distance in the
undistorted actual crystal, The electronic screening length A in Eq. (9) is
chosen after smith et al. [23], to be of the form: ‘

A =281/ : (11)
and the ECT parameter p is defined by
p = 2n-2 (12)

where n is the atom principle quantum number. The two summations in Eq. (9)
are over the actual defect cry‘s;\al - the first over nearest neighbors and the second
over next — nearest neighbors to atom I . The values of the ECT parameters I
A, and p for each metal can be determined via their defining equations as given
in the above presentation. Table 1 displays the values of these parameters for the
bee elements used in this work. The ECT parameter o in Eq. (9), primarily
reflects the structure of the electron density in the overlap region between two
neighboring atoms, and it is determined via the requirement that the energy to
form a rigid or unrelaxed monovacancy be equal to the experimental vacancy

formation energy E “f . The equivalent lattice parameter a, , is thus related to the

scaled quantity a,' via

a; = (R,/c-ry)ll (13)

where / is a scaling length and c is the ratio between the equilibrium lattice
constant and Fy. . Thus, the determination of the energy for an ion in or near a

defect amounts to solving a simple transcendental equation for the equivalent
lattice parameter. :

The higher order terms are relevant for the case of anisotropic
deformations. The linear independence attributed to these four terms is
consistent with the limit of small perturbations, which is assumed for the

formation of the ECT. The second term, F 4 (a; @, j)), is a two-body term

which_accounts for the increase in energy when NN bonds are compressed
below their equilibrium value. This effect is also modelled with an equivalent
crystal, whose lattice parameter is obtained by solving the perturbation equation
given by :
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The fourth term, F (a,(i,p.q)). describes face diagonal
anisotropies. The perturbation equation is

N,R” exp(-aR,.) - N,R] exp(-aR,)

+ ARy

d,-d, /dexp[-a (Ri+R.+R+R,- 4R)]=0 (20)

where d is the face diagonal of the undistorted cube and Ay is a constant adjusted
to reproduce the experimental shear elastic constants. Finally, the scaled lattice
parameter for the fourth term is given by

ay= (R /c=ryse)/ 1 1)
3. SURFACE ENERGY CALCULATION
RELAXED SURFACE

In this study, we provide a simple application of the ECT method to
bee metallic surfaces. in contrast to our previous work [25] , where we
considered only a rigid surface. The assumption here is that only the surface
plane i¢ allowed to relax, and perpendicular relaxation was considered in this

study,

Letting the plane close to the surface relax, turns on the other three .
contributions to the energy. Some bonds are compressed, contributing to

F '(a;), the bond angles near the surface as well as the difference betwgen
face diagonal are distorted, generating an increase of energy via F '(a; ) and

F (a;) . Also, allowing the atoms in the surface region to relax introduces the
additional complexity of including in the calculation more nonequivalent atoms,
located in deeper layers.

Many - atom effects, which are represented in ECT by the inclusion of
the three — atom bond-angle anisotropy and the four — atom face diagonal
. distortion terms (see the third and fourth term in the right — hand side of Eq. [7]
are necessary but, in the case of surface energy calculations of metals, of very
little relevance. As have been shown [23,24], in other previous ECT works, they
introduce a small correction, usually of the order of 1% of the leading term in
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Gquations (22-24) are then solved, for =ach - ulue of . for the equivalent
crystal nearest neighboer distance K

Finally. the "volume coninibution 1o the surfac - one gy s

AE & ,
:72 F*{.al‘,;(-ﬂ} iy
where
a:f & (Recm le- rWSE)/l ' (30)

A is the surface area and F* is given by Lq (8}

In order to compute the hond-compression Contbulicn Whii iy
framework, we need 1o soive 5 franecodemal equation o order
find the equivalent crystal 2

RR” exp(-a R, )~ 8R] exp(-aR, )+ 44,515 - X denpl- i - K)=8 (1)

Equation (31) is then solved with respect to i and e energy contribution is
then

AE % x| -
02=7F {az(x)) . (32)

where a, is given by Eq. (17},

The third term in Eq. {7) deals with bond-angle anisotropies.

Contributions to ¢ come from atoms for which the angle between the nearest =~ "

neighbors departs from its equilibrium value 0, (0, = 70.5° for bec metals).
We shall adopt the convention described in Ref. [23], i.e., if an atom 1s

missing one or more nearest neighbors then (0 @, Jj,k )) = 0 for that atom
and the atoms in the top layer do not contribute to ;. The only contribution _

then arises from the atoms in the first layer below the surface (j = 2), for which
we solve the transcendental equation
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8R” exp(-aR,) - 8R] exp(-aR,)

+ A,R" exp[-a(r.- R, )]SinIB - 90| =0 (33)
where
2 2 2
o= Cosgl[ﬁ“'—jz—fi;z':—&] (34)
Equation 3‘3 is solved with respect to R, and the bond-angle contribution is then
A8E . i vy sk
0, = TF (a; (x) (35)

where a, is given by Eq. (19).

Summarizing, the surface energy of a bee (100) face, where the top
layer is allowed to relax, is given by

AE[T S . of o+ (i
c = T[ZF(H“"(X))+F(aZ(x))+4F (as(x))] (36)

*
The calculation of the contribution to the defect energy from a, has been

ignored in this study. Equations similar to Eq. (22-36) can also be written down
for the (111) — (110) — faces. Such details are ignored here.

4. RESULTS

The different contributions of surface energy arising from the ECT
formalism are displayed in Table 2, the surface energy résults are both for the
{rigid and relaxed case. From Table 2, it can be seen that the contributions from

the bond;angle term 0 ,, are very small when compared to the first two terms of

the ECT expansion. This, further establishes the fact known from previous ECT
works [23,24), that the many-body anisotropies (bond-angle, face-diagonal) that
appear in the ECT formalism are not of great relevance for the calculation of
surface energies. -

The surface energies obtained from the three low-index faces of the

nine bee metals are summarized in Table 3, and are compared with the results
from the embedded atom method (EAM) [27]. first principles calculations
[16,21,28,29], the modified embedded atom method (MEAM) [30], the Tight-
binding (TB) method [31], the Jellium model [32), and experiment [33]. The
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ECT surface energies are uniformly larger, and closer to experiment than those
obtained by the EAM[27]. which is known to underestimate surface energies
fcc metals. From Table 3. it can be seen that our ECT surface energy results are
uniformly larger and closer to expeniment and first principles calculations. Cur
relaxed surface energy results like the unrelaxed surface energies [25].
consistently support the trend ;10 < @11, < 0. Which shows that relaxation
effects do not affect the ordering of the (!OO) (110) and (111) surface energies
of the ECT.

Our resylts for the top-layer relaxations are presented in Table 4, and
are compared with the results from first-principles calculations [21], the Tighi-
binding quenched molecular — dynamics calculation [22], and experiment [34-
39]. Our relaxation results of the (100) and (110) faces of Nb, Ta, Mo and W
compare favourably well with the work of Luo and Legrand [22]. The only
discrepancy is the rather too high contractions predicted for the (111) faces
compared to our low values. Our ECT values are also in good agreement with
the first-principles calculation of Meilifessel et at. [21]. The first —layer
contraction determined experimentally for the (100) surface of Mo (Ref.[35] } is
in reasonable agreement with our value. The agreement with experiment is
rather good considering the experimental uncertainties, for instance

experimental Ad,, /d is between — 3% and — 10% for the most studied
surface, W (100)[37]. .

All the result presented here are obtained for the unreconstrucizd
surfaces, i.e., we allow only rigid translation of the surface layers. However, it is
well known that W (100) and Mo (100) are reconstructcd at low temperature
[22].

5. CONCLUSION

We have presented an ECT study of surface energy and surface
relaxation in nine bce metals. This has greatly extended the work of Smith et al.
[23] and other workers [24,25] on bee metals. Very generally, the surface
energies are found to be in good agreement with the results from first-principles
calculation and experiment. Our work on relaxation is also good too, as it gives
the correct sign and magnitude of the top-layer relaxations compared to theones
.[21,22] and experiment [34-39].
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Fig. 1. The bee (100) plane and the neighbor atoms in each plane. The index j
labels the planes, starting with j = 1 for the surface plane, and 4NNN
indicates that the plane j =1 has 4 next nearest neighbors, etc.

Table 1. Computed ECT Constants and Experimental input for bec metals.

Element p I (AY a (A" MAY) 10~ A2/D
Nb - 8 0341 | 3353 | 0958 4374
Ta | 10 0.326 4.069 0915 4374
Mo 8 0.262 3.598 0.736 4582
W 10 - 0271 4243 0.760 4.568
Li 2 0.589 063 1.656 4135
Na 4 0.578 1374 1.625 3.416
K 6 0.694 _ | 1524 1.951 2.762
Rb 8 0.652 1.930 1.831 2.584
Cs 10 0.758 2.105 2.129 2.388
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Table 1. Ctd
Elements | 107 10" A4/D 10*D AE(eV) a(A”)
A3/D
Nb 9.560 | 0.729 8.728 7.57 3.30
Ta 8.568 1.402 1.161 8.10 3.30
Mo 12431 | 1.238 7936 6.82 3.15
w 11.697 | 1.468 1.168 8.66 3.16
Li 5248 | 2.247 3903.951 | 1.63 3.491
Na 4.287 1.896 538.857 | 1.113 4225
K 4.930 1.776 72532 - | 0934 5.225
Rb 4.440 1.851 9.427 0.852 5.585
Cs 2041 | 1.466 133 (0804 |604s 4




Tables 3. Stirface Energies (in erg/cm?) for bee iﬁetals .

APPLICATION OF EQUIVALENT .v.u0

Crystal | ECT | EAM | LDA | MEAM | 1B | JELLI | Bt |
e, '“(f:ijg} - | Present |[-Ref[27) |:2.57 N Ref:[30] Ref, lﬁl::‘ 4 Ret.
O T I
Nb (100) 3967 | 1970 | 3100°2860° [ 2788 7370 7700 |
()] 2110 1810 1640° 2360° 1868 1540
i 2809 2018 2440
Ta (100) 4121 1990 3292 3oqo 3150
(110) 2217 1800 1790° 2173 2050 ‘
amny 2944 ! 2305 “3140
Mo (100) 4778 2280 3520° 2122 2120 000 ¢
(110) 2598 2130 | 3180°3140° | | 1930 3040 A A
(1 3384 1861 2840 .,
w (100) 5819 2810 5100* 2646 6700 :
(110) 3293 2600 3840° 2232 4300
(11 4227 2247 6750 ‘
Li (100) 636 436 431 mn 528
(110) 314 458¢ 202 326 o
(1 425 279 433
Na (100) 191 2365 288 26 260
(110) 218 307° 169" 190
(11 280 202 252.
K (100) 207 129¢ 182 115
(110) 122 1165 110 1
) 154 125 134 EET
Rb (100) 145 107 9% e R
(110) 79 %2¢ _86 : F
(i 104 je ' r
Cs© (100) 109 #2" 7 95 ,Lr;
(110) 63 7 K] A
(i 82 2
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a Full — Potential LAPW calculation, using nine-layer slabs (Ref.28)

b FP LMTO calculation, using seven — layer slabs (Ref. 21)

¢ Green's function LMTO — ASA calculations (Ref. 29)

d Local — density functional calculation with full — potential LAPW total -
energy calculation (Ref. 16).

Table 4. Top ~ layer relaxation in percent of the unrelaxed layer spacing d,»/d
- (%) for the three symmetrical surfaces, d is the bulk interlayer distance.

Element | (bKL) ECT- LDA T® Expt.
- Rel. |21] | Ref. [22]
Nb (100) 5.5 9.3 6.3
(110) 3.0 37 36
(1) 7.3 215
Ta (100) 4.2 6.3 “la
(110) -3.0 ' -3.8
(i 6.1 216 :
Mo (100) 5.1 9.0 -6.9 -9*
(110) 3.2 -39 33 -1.6°
iy -7.0 -19.7
w (100) 238 -35 3to-10"
(110) 3.2 -14 <2*
a -5.7 -16.3
Li (100 -14.9 '
(110) 97
(am 229
Na (100) -8.5
(110) 6.2
ain 137
K (100) -0.1
i 1oy | e
atn -10.0
Rb (100) 54
= (110) -39
' ay | 79
Cs (100) 43
(110) -3.3
(i 6.6
a From Ref. 34
b From Ref. 3§
¢ From Ref. 36

d From Ref. 37 and 22
¢ From Ref. 38 and 39
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