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ABSTRACT
Using the methods of spinor calculus, we prove the identity
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INTRODUCTION
A great insight into the structure of the Lorentz group, LI .is gained by

bringing to bear on it the methods of spinor calcubus [1]. Let GL (2,C) be the
general linear group in two dimensions. Then the special linear group, SL(2.C), is
defined by SL(2,C) = {M € GL(2,C)| det M = +1}

There are two inequivalent representations of SL{2,C). The first is the seli-
representation defined by D(M)=MVY M € SL{2,C),
where D(M) is a linear map from SL(2,C) to the automorphism group of a linex:
vector space F with elements ¢, , A = 1,2. The second representation is the
complex conjugate self-representation defined by IXM) = M*VYM € SL(2,C}

The representation space in this case is demoted by F£ with elemen
v, 4=12
It is found that D(M) = M~ ]Tis an equivalent representation of D(M) = M. The

representation space of D(M) = M ‘lTis denoted by lF" with element Q'd
A=1,2, !

Because of the equivalence, there exists a 2x2 matrix
PN
“\-10/ " \"4B] .

A ) ‘
-17 AC D
(M ) B=¢ Mc SDB (N

such that
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Similarly, it is found that M* and M* are equivalent representations of M

with the representatlon space of M* 1T genoted by F* with elements
F4  a=12.
Hence, there exists a 2x2 matirx

A (? 5) § (“'}'ns)k1

such that

o AC M D
_ A ="V (M) e,
(M* 1T) B C DB )

Eqgs. (1) and (2) are known respectively as representations with undotted and

dotted indices.
Under SL{2,C) covariant and conira variant, spinors with undotted indices

ansform respectively as follows:
B
¢A . M ¢ (3a)

¢A3(M—1T)A Bgs*é (3b)

' Similarly, covariant and contravariant spinors with dotted indices transform
respectwely as follows

(M*)AB‘?B (4a)

"P"A .:-( ,,,..11)”‘.—3 | 1ad bwbhi 1(4b)

In a previous pﬁper [2], the author proved, using the methods of spinor calculus,
the following two well-known scalar and vector identities:

'\F‘(x)‘l’ (x):ﬂrl—’—(x)q‘ (x)

“‘i’—'(x') ¥ K @' .(x') =AYV T (x)y_‘_’ ‘I-'(x)
Here ¥ (x) is the Dirac four-spinor in the Weyl (chiral) representation
¢4 |
a(x)= [ sa) e 1234 ©)

and (also in the chiral representation)
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Here

and

gt = (0_0,5)= (1,—0)

where ¢ = (a . ,0 2 ,0 3) are the three Pauli matrices »

In the preseritpaper we shall prove the second-rank tensor identity | |

()t (x) = A A T ()

where

v l‘
oy = 3lrtr']
and A” y are elements of the matrix of the restricted Lorentz group Lt

, 1 )'
given by A#V =5 Tr[M"' E”Mcrv]

PROOF OF THE TENSOR IDENTITY

We now prove the second-rank tensor identity
¥ (x')af Vg (x') = A\ pAvcr ‘-P'(x)af o‘i’(x)

where

with
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On using

we obtain

() = { 24 }

A

LA ’ T AB)
= i
B '1 048
— A¥YQ
J = v
Y= 4

) @(\) :(cﬁ B.W’?g)

Then, by Eq. (9)

@(.\‘)Jfg‘}’(,\‘)

since

-‘?'(x')

Uf‘j\}“(x') =

(11a)

(11b)

(12)



Initially, let us consider the first term of Eq. (13) ks

J7i
ie i(¢'A @'.) O || ° #c
o3 P A) | _pdB 0 SvBC o Tl
G ¥

(On using Egs. (3b), (4a)‘, (3a), and (4b))

i s l . A o¥. (M*"JT)DE‘TITE
i Y. E D i
NNy R ety P

[(M*)AB\P O"UACM D H (M—I)DC ED(M*—'IT)DE;;E}

o e ety Y [ O SR VI

We first consider the first term in Eq. (14). Assuming that’ ¢D¢ B £ 1, this can be

rewritten as

C

(M*) Bq, FHAC D%M{ﬁo(Ml)Dc ED(M*-U)DEgE} (15)
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. B u v L0
(28 W e (A
) * ? i Bt N
2 Al zuaB 0 _$C 0 @.C
. v ol . o
2 5B 0 || suBC 0 || g

From linear algebra one may recall that F *(F = 5 **) is the dual space of

I
)
The first bracket in Eq. (15) then becomes
«).Bs Fg uAC Ds E
(M#) 5, ¥ M.P5 Fp
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(by using the identity

F _.pFE
= - 16
258 5DE OpDB (16)
1[ Y B _
M0 . BapFE, & swAC,, D
=l—(M+)B,C—,MCM p, . o_pFE¢ ]
i .- _pFE ]
R —p 5P
"2 [M MGPHLP %5
(by Eq. (10))
=Np¥, 5 ”pFEs#E (17)

We now consider the second bracket in Eq. (15)
ie., -

.,‘D(M 1) Cc,v (M,.. lT) Eq,_E"

D “ch
C D :
-, D —F
O e
—tFE ,
(On making use of the identity o . b = EceEDiC )

‘G o o
- -11‘) D _vFE( ,.-11') L B
T(M* DY cpfpp® \M E
,(M-lr)c a2 aFs EVFE(M,—IT)D_aE.?G
(by Eq. (17)), '

e 3 ;4 ¥ 18
M) b oopa? fcgpr® M E i

cy
. -1T _CG,, H is
On_usmg (M,_ | ) D=¢ MG £ub ( a)

go-1T 17 . DH J : .
and (M_' ) g=e 1 (M¥)g £ i | T (19b)
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Eq. (18) becomes
! CG_ —ofD F
- H ol . ..
2MG e ey T 0 pe? fptpp
L o _akD
Upon using O'HJ = EHDEJEG
Eq. (20) becomes

M HECG.EDHJG & .¢F€
G . afFG
HJ

NI'—-

. CG _(T)GC _ G
Upon using & sCE—e £, =-8

On using Eq. (10) we have

'‘C v gD _ v F'O
¢ o ¥ T =A log .

CD of FG
Eq. (14) now becomes

I

Ly v o —pFF ¢ =G
2A pA a-lPF‘a,/ chG-‘P
We can rewrite the second term of Eq. (14) as
i A / S S
o5 (M—lT) 4B .(M*—IT) gbo|g
2 B AC D
By comparing this with Eq. (15), and bearing
7 and (23), we find that this second term is
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(21)

e, 5 E (M%) TTC ()

(23)

v =pFF F. % G
A AV ¥ . GP ¢F)(¢ o R J
2( p F FG

124)

D—.

5 ) CG‘CDMDE%]’

in main the steps leadiﬁg to Egs.
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i u :
Y N o
A ol 0'¢ cTAC'G ¢

2 (25)

D

In accordance with the steps leading from the first term of Eq. (13) to Eq. (14),
both Egs. (24) and
(25) now yield

i i o

PR (x')r”rv‘i"(x')=5<$”pAvg‘i‘(ec)rpra‘f’(x) (26)
Similarly, the second term of Eq. (13) yields

[ i A —

SF @Yy e () =g N TG () (27)
By comparing Eqgs. (14) and (13), Egs. (26) and (27) yield

_‘I'-’m' (x')cr:: Y ‘P'(x') = A P) A G@(x)cré"m“:r ‘P(x)

which completes the proof of the identity.
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