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ABSTRACT

At any level, decision-making is essentially a matter of choosing between a number of
alternatives. Such choices are totally subjective, being based on our knowledge of the
alternatives available and on the sum total of our personal experience and culture.
Choice suggests numerical weighting. Using numerical values to quantify the
preferred choice reduces intuitive decision making to arithmetical calculation. im
dealing essentially with circuit specification in frequency domain, the design problem
includes deciding the size order of filter required and computing optimum values of
the components. In this presentation, Bessel function response is chosen to determine
the filter order and a sum of square objective function is formulated to determime
optimum component by applying a conjugate direction algorithm in minimizing the
objective function. A measure of the effect of variation in individual component value
on circuit response is computed as a measure of tolerance in terms of rejection rate
and yield using Gauss...n distribution function. This is a didactic presentation of what
we are to do in thte presence of this problem.

KEY WORDS AND PHRASES: Tempiate specification, Bessel response, conjugate
direction algorithm, design objectives function, sensitivity to component variation,
Gussian distribution, rejection rate percent, the yield or acceptance, tolerance
analysis.

1 INTRODUTION
Our most concern is the application of optimization technijues in the design of filters.
The range of disciplines to which optimization has been applied goes very far beyond
the confines of elecfronics and engineering. Lawrence Dixon (7] provides an
interesting insight into this breadth, with applications from a wide cross-section of
engineering and scientific fields. Specifications for linear frequency-selective
networks are often very demanding and mathematical complexities of designing a
suitable network are frequently very great.

In 1887, Oliver Heaviside realized that the impedance presented to an
alternating current by an inductance L is proportional to L. Since the impedance

presented by a capacitance C is proportional to* 1/wc, then by proper arrangement of
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inductors and capacitors it is possible to selectively shunt either the high or low

frequencies and by pass the others. A high-pass filter network can be constructed in
which the inductors shunt the low frequencies while the high frequencies are
transmitted through the capacitor. It was not until 1900 that a successful low-pass
filter was constructed by Pupin. A high-pass filter was built by Campbell in 1906. A
low pass filter can be constructed by interchanging the position of the inductors and

capacitors. There are indeed many situations in which no analytic design method are *
available. and numerical techniques then provide the only course open to the designer.

Hence the earliest published instance of the use of optimization in electronics
nvolved the design of filters. It is interesting to note that the design of filters with
completely arbitrary loss factor is one of the situation for which no exact design
method exist. The published result showed that computer optimization allowed
design solution to be produced, although run-times were rather long. Some author

used steepest descent algorithm, which perform poorly, to obtain optimum component -

values. Lasdon and Warren [13] considered the same problem but applied the
powerful Dividon-Flecher-Powell quasi-Newton algorithm with predictable better
result. In this work we have employed a conjugate direction quasi-Newton method
proposed in Ref [2].

Usually the name associated with the filter accurately describes the type of
frequency response for the filter network. There are certain basic terms used to

describe the characteristics of all electronic filter netwerk. These terms include pass -

band, stop band and roll-off point. A majority of the better type of electronic filters
are constructed of capacitors, inductors and resistors. Their purpose is to either
enhance or attenuate a range of frequencies. [1,4-9,11,14,15-18,20].

Filters can also be described as low-pass or high-pass. In the low-pass filter
network, the capacitor offers a low-impedance path for all higher frequencies present
in the circuit. The inductance offer low impedance to the lower frequencies since the
inductance is in series, Electrical and electronic filter often found as discrete devices
include low-pass radio frequency filter used to eliminate unwanted RF single
frequencies from being transmitted by any type of broadcast transmitter. The higher-
pass uses the same component, as does the low-pass filter. In the higher-pass filter the
pusitions of “the inductance and capacitance are reversed. The capacitors are
connected in series with the signal path and provide a low-impedance path for higher
frequencies. The parallel -connected inductor offer a low-impedance path to low
trequencres 1. 14-20].

Filters can also be classified as active or passive according to their
components. Passive filter network consists of impedance (resistor. capacitor and

fuctorr arranged in shunt,
Advantapes associated with passive filter include:
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(1) it generates little noise of its own due to temperature.

(2) it can be subjected to variety of voltage without fear of
situation.

(3) It does not require power supply.

Active filters employ only resistors, capacitors, and some form of active element
(amplifier), which introduce some gain into the signals.

Advantages associated with active filter include:
(1) Simplicity in manufacturing

) It is practical for use of the lowest possible frequency.
(3) It costs much lower than its equivalent passive counterparts.
4) It has negligible sensitivity to external electrical field.
(5 It has small physical dimension
6) It has gain and frequency adjustment flexibility i. e. it is easier to tune or

adjust because the operational amplifier is capable of providing a gain and
the input is not alternated.

(7)  Because of the high input and low input impedance of operational amplifier the
active filter does not cause overloading of the source load.

The classical problem of filter design consists in: .
(a) Obtaining a realizable network function Hr(s) whose corresponding
: amplitude and phase function Hr(jo) and arg Hr(jo), satisfy the given

template. This is referred to as approximation. Approximation theory is the
theory of how to achieve an approximating ideal response by a realizable
transfer function. It involves selecting a transfer function, which on one hand
satisfies the specification of the filter and on the other can be exactly realized
by a practical circuit. The five major approximations are: Butterworth,

Ch/ebyshev, Inverse Chebyshev, Elliptic and Bessel, Of specific importance

in this paper is Bessel approximation. In cases where linearity of phase in the
pass-band is of concern, Bessel filter could be used as low=pass
approximation. o ,

(b) Synthesizing a network by performing a sequence of mathematical
operation on Hr(s), leading to a network which thus satisfies the original
specification. This is referred to as synthesis.

: For a given problem specification, the task is to describe what order of fllter
is; how many transfer function pole there should be (we also need to know whether
zeros are required) and where they should be positioned. But the next approach to
system specification is to determine without any consideration of the proposed kind of
filter format a suitable realizable network function, on which to base the subsequent

computation stages.
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Interested reader will find useful introduction to filter theory in the literature
[10]. Much of the difficulty of approximation or synthesis cycle has been eased by the
production of design tables and graphs relating gain and phase specification to
standard filter function (Butterworths, Chebyshev, Inverse Chebyshev, Elliptic,) and
given component values for standard active and/or passive filter structure which
realize these various filter function [see, for example, References 8 and 10]

2 MATHEMATICAL REQUIREMENT OF LOW PASS ACTIVE
FILTER DESIGN

The starting point is the specification, which require the skill and experience
of the designer and will lead to initial guess problem. The design problem then
involves determining the correct numerical value for the component within the
circuits. The adjustable component values are referred to“as design variable. The
realized and specified performance is next compared and a decision is taken based on
the result of this comparison. If the realized performance does not satisfy the
specification, the design variables are adjusted and this is repeated until a satisfying
solution is achieved or until a predetermined accuracy (tolerance) is achieved. The
active filter structure has a regular form, which admits of a simple recursive analysis
scheme. Therefore given the current set of component values stored in a vector
x(say), the analysis procedure would return a vector whose element or entries‘are the
s-plane voltage transfer function coefficients.

Given this fast and very efficient analysis capability, we next consider the
formulation of a suitable design objective function. Since the aim is to minimize the
“error” or deviation of the specified from the realized component values, we

formulate the design objective function i) (X) as a sum of squares of residuals f(x)
defined by

fi(x) = [ay -a. (%) ] @2.n

and @ (\) T E:I [fi (l)P (2.2)

where n is the filter order. a, are the specified component values and a,; are the
realized component values which are the coefficients of the transfer function. We
shall next determine n the filter order from the Bessel function chosen. Using
amplitude response function associated with a low-pass o" — order Bessel filter given
as function response we know that if the Bessel function of order n is

ORI HR U

then,
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Hessian matrix associated with @ (x) exist and is positive definite.
A program was written in Turbo Pascal and run on COMPAQ 386 and the execution
time was 4.3 seconds of CPU time. The results are displayed in table I and Table II.

Taking n =4 as the filter order, the objective function then becomes

o)=Y (ag-a4 (F

2ols)

A conjugate direction algorithm discussed in [16] was chosen to minimize (®(x),

for xeR" under the assumption that ®(x) is differentiable and ’ the
‘ P Ox;0X;
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TABLE I Order = 4. meinal component values

= |G R, G R; G, R; C, Ry

H

&

1 11.8270 0.9467 | 20.7600 1.5659 | 75.2130 1.8698 | 857640 1.5843
2 12.4048 | 0.9735 | 22.3741 1.6055 | 80.1130 | 1.9111 69.46 2.0028
3 12.5329 | 1.0414 | 23.5630 | 1.5875 | 83.2780 | 2.0098 | 111.7680 | 2.034]
4 13.6508 | 1.0535 | 26.1620 | 1.3075 | 82.3700 | 2.0588 | 112.7720 | 2.2355
5 14.7197 | 1.0534 | 25.1800 | 1.3450 | 84.0250 | 1.9636 | 115.6630 | 2.3045
6 14.7247 | 1.0817 | 25.0711 1.3747 | 102.5990 | 1.9121 | 115.6230 | 2.4212
7 14.8447 | 1.2707 | 24.0710 | 1.4671 102.599 | 1.9121 | 1156230 | 2.4212
8 144127 | 1.3175 | 26.1540 | 1.6671 | 105.3070 | 2.0676 | 115.5480 | 2.3212
9 14.5647 | 1.3405 | 26.9200 | 1.7452 | 108.5990 | 2.0903 | 117.7500 | 2.2099
10 14.6367 | 1.3333 | 27.1290 | 1.7607 | 109.552 | 2.1247 | 117.8040 | 2.2442
11 | 156107 | 1.3222 | 27.2460 | 1.8408 | 111.4820 | 2.4607 | 117.7000 | 2.2852
12 16.6777 | 1.4011 29.2420 | 1.5419 | 112.8230 | 2.5325 | 119.6038 | 2.5274
13 18.1007 | 1.4556 | 29.5460 | 1.6230 | 120.8230 | 2.6225 | 120.1270 | 2.3810
14 18.1237 | 1.4381 30.1554 1.7040 | 122.6240 | 2.6689 | 120.1270 | 2.3810
15 18.6157 | 1.4972 | 30.0466 | 1.7360 | 121.9010 | 2.6689 | 120.5420 | 2.3660

) R= Resistors =R, R;, R;, Ry,  C=Capacitors = C,, C;, C;, Cy,

TABLE Il Realized component valueswhen order =4

COMPONENTS REALIZED VALUES AT
SOLUTION

C, 18.6157

£, 30.0466

C 121.9010

C, 120.5420

R, 1.4972

R. 1.7360

R, 2.6689

Ry
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3. SENSIVITY ANALYSIS
In practice, component values are not accurate. Manufacturing tolerances of

resistors and capacitors for example are usually between + 0.1%, and + 20%.
Transistor current gain is subject to large variatio typically + 100%, -5%. Most
integrated circuit components vary in the range * 5% to + 20%. Moreover,
components vary owing to environmental effects, such as temperature and humidity.
This section is concerned with evaluating the effect of these variations on the nominal
response of the circuit. The response obtained by analysis of the circuit with the
nominal component values, that is, those predicted by the circuit design, is called the
nominal response. It is normally a close approximation to the required response given
as part of the design specification. The general term sensitivity is applied to all
measures of the effect on circuit response of variation in individual component
values. The collective effect of simultaneous variation in all component values- is
called the tolerance. ! .

Let us suppose that the value of a circuit response ¢ which is a function of
the n component values Xy, X,..., X, be given by

@ (x) = D (X1, X2.--, Xn) A1)

This function ¢ need not be specified. It is normally expected to be the frequency
response at a given frequency m, or the transient response at a given time t,, and the
value of @, or t, would appear in the function f as an independent variable. Let
_increment changes in the component values %, Xz, Xs,....,X, be denoted by Ax,,
AXa,.... AX, and let these cause an incremental change A¢ in ¢. The Taylor expansion
of a function abeut a point gives the change in value of the function caused by
variation of its parameters in terms of the function its gradients at the point, and the
parameter increments as:. - 1g that the function is differentiable. Hence, expanding
about the nominal value of .esponse ¢, the increment A® is given by -

© ek

5 Ad | L az(p 1rnmn 63@ -
AP =) —AX; +— ——AXAX; + — —AXAXAX, +
E, i 2'§,Z=1 ax; Bx; ! 3'>=:1,=an§1 oxoxy ok, 0"

(3.2)

which is an infinite series involving the partial derivatives of the function ® with
respect to the component values and is valid if all derivatives exist [1,8,11,14-18].
Neglecting termrs involving derivatives of third and higher order on the assumption
that changes in the component values are sufficiently small for accuracy to be
maintained, and indeed, neglecting also the second-order term we have, '
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A_<D=i?-?-Ax,- (3.3)

i=10X;

Hence, we define the absolute sensitivity S; of the response @ = @ (x) to the

component x; by the first-order partial derivative —
i

That is,

op . AD
S =— = lim — :
gyl | (3.4)

If we denote the gradient G by V® which is a row vector of first order partial
derivatives that is,

| T
ve=GT=| L2, 2 B s
v, X, T BX,

where the symbol T qEnotes transpose.
When the response is evaluated at m sample points, t;, ty, ............... tm of
an independent parameter t (for frequency or time) the response ¢; is given by

0 =0 (X, Xy X0, )= (X}, X500 X, ) (3.6)

The gradient vector G is most usefully replaced by the m x n gradient matrix S where,

o % %
3x| BX2 ax"
S= | 222 s
Ox, (3.7)
OBon i N
L Oxy 6x,,)

This is the first-order sensitivity matrix. The Hessian matrix. H

H = [ ("—?-—}.i-—-L....n,_j:l,,,,_n (3.8)

OX, OXy
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is the second-order sensitivity matrix. Unless we can obtain the Hessian as a
symbolic transfer function we do not normaily use it for responses.
The matrix form of equation (3.2) may be written:

i 1
Ay :Gjéx“'rg Ax" HAx, : (3.9)

Where Ax is the vector containing the incremental changes in component value
defined as

Ax =[Ax,, Ax, .. Ax, [ (3.10)

The relative sensitivity Si of the response ¢ =y (‘xl, xg,....xn) to the component x; is
defined by

s, ollog,0) _ % & _ Ax , (3.11)
ollog,x;) v ox; o

The semi — relative sensitivity Q; and O of the résponse 9= (xl, xz,....xt) to the
component x; are defined by

0, = M: iSi A ' (3‘12')
0x; y
) B : |
A .. R =Xisi 3-1
& log, x;) @.18)
4, TOLERANCE ANALYSIS: COMPONENT VARIATION.

It is often sufficiently accurate in tolerance analysis to assume that a
component distribution is Gaussian (or Normal) with mean value and standard
deviation equal to that of the actual distribution. This assumption may be justified
first by the observation of the general form of a Gaussian distribution. Secondly, the
combined effect of the distribution of a number of different components on a network
response more closely approximates a Gaussian distribution as the number of
components increase. The properties of the Guassian distribution must therefore be
established in relation to tolerance analysis and design [1]. '

The Gaussian distribution function is defined by
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X

olx)=|

-0 OV 21

etv) 20 gy @.1)

where p (x)is the probability that the sample vélue lies between - coand x. The
probability density function ¢ (x) obtainable by differentiation of @ (x) as given in
equation (4.1) yields

w(x)zgw(_sz Le -(K‘P)Z/QOZ (4.2)
dx a\/QTc :

The incremental area (x)dx then gives the probability of a sample assuming a

value in the interval x to x + 4 x . If we assign upper and lower tolerance limits x, and
Xi respectively such that the region x;<x<x, is acceptable, then the probability of a
sample assuming an acceptable value is given by

fw(x}ir—*f Ll 2y 4.3)
X x, O 2n

This is called the yield [1]. Since the total area under the probability density graph is
unity, the probability of a sample assuming an unacceptable value is the rejection
ratio = [l - yield]. Both figures are usually quoted as a percentage. When the
telerance limits are equally distant from published tables, then in terms of a parameter
K we have

Ko=pu-x, =x,-p (4.4)

Letting Z= (x-#}/a 'in equation (4.3) and taking advantage of symmetry, we get

K G
Yield = 2 | J—;_—e dz (4.5)
0 P

=

Evaluating this integral produces the fo]iewi_ﬁg Table III.
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TABLE IIL Rejection or acceptability of a component value.

K Rejection Rate% : - Yield
| 6270 76.5 235
6654 753 247
8035 : 67.7 323
9724 67.5 - 32.5
1.2270 60.9 39.1
1.76 479 52.3
3.2113 -44.4 144.4
3.5579 -404.5 504.5

TABLE IV. Component distribution.

il ¥ (Xi--phsi)
-3.81 0.015
-0.48 0.020
-0.26 0.570
0.15 1.670
-0.12 3.710
3.59 0.060
7.02 0.033
20.35 0.0001
i M- , 2n, n is the filter order.
5. DISCUSSION AND CONCLUSION o

When the nominal circuit design has been completed and a final full analysis carried
out, the designer should have all possible information about the behaviour of his
circuit. However, circuit design is far from being completed. A design may appear to
be perfectly acceptable on the basis of nominal behaviour and sensitivity to
component variation yet is quite useless in practice. Design will be complete only
when tolerances (k in table III) have been assigned. -nd 2 full random simulation
carried out to assess yield (table IIT), production cosi= and behaviour as components
vary together. .
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Fig. 1 Amplitude response specification for example filter.

Fig. | shows a template specification for a low pass auti-aliasing filter
intended for a particular communication system. It is possible to assess the rejection
rate percent of a component value, which is the major probiem of tolerance
assignment that has not been adequatc'y considered. It is easy to deduce that design
based on the specifications proposed in table II is far from being perfect. Sensitivity
analysis is the vital link between analysis and design and applications of sensitivity
- begin with tolerance analysis and if any circuit does not meet the design specification,
more information is necessary.
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